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The Ising Model

Consider,

PN
β,B(σ = τ) :=

1

ZN(β,B)
exp

(
β

2d̄N
τ ′A(GN)τ + B

N∑
i=1

τi

)
(1)

for τ ∈ {−1, 1}N .

1 A(GN) – Adjacency matrix of an underlying graph
(may be random), think of social networks.

2 d̄N – Average degree of GN , i.e., d̄N = (1/N)
∑

i di .

3 (β,B) – parameters in [0,∞)× (−∞,∞).

4 We observe one copy of (spins) σ.
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The Ising Model (continued)

Consider,

PN
β,B(σ = τ) :=

1

ZN(β,B)
exp

(
β

2d̄N
τ ′A(GN)τ + B

N∑
i=1

τi

)

for τ ∈ {−1, 1}N .

1 β = 0 implies Xi ’s are i.i.d.

2 B > 0 implies the spin sites incline towards +1.

3 B < 0 implies the spin sites incline towards −1.

4 B = 0 implies the absence of external influence.

5 (A(GN))ij > 0 implies sites i and j are inclined to align
in the same direction.
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Assumptions

(A1) (Bounded row sums):

lim sup
N→∞

max
1≤i≤N

di

dN

<∞.

(A2) (Well connectedness):

lim sup
N→∞

λ2

(
A(GN)

dN

)
< 1.
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Commonly studied examples

A(GN) is the adjacency matrix of:

Lattice graph in d dimensions: Original paper by Ising
(1925) considered the one dimensional lattice. It was
proposed by Lenz to model sharp phase transition of
ferromagnetic properties (at Curie temperature).

Complete graphs: Curie-Weiss model.

Random graphs: Erdős Rényi, random regular, etc.
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Applications

1 Modeling dynamics of interactive systems –e.g.,
atomic motion in lattice gas, earthquake dynamics,
image segmentation, etc.

2 In social networks, to study trends in opinions (voting
choices), where GN could be determined by
“friendships” within the network.

3 Modeling ferromagnetic properties (i.e., sharp change
in magnetic properties of magnetic materials when
heated beyond a certain (Curie) temperature).
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Applications continued...

Physics: Ising [1925], Fytas et al. [2019].

Social Sciences: Marsman et al. [2018], Schelling
[1971].

Neuroscience: Yuste [2015], Fraiman et al. [2009].

Image analysis: Besag [1986], Sun et al. [2012].

Machine Learning: Hopfield [1982], Zhang et al.
[2015].

Earth Sciences: Siegel et al. [2018], Raymond et al.
[2016].

Theoretical (goodness of fit): Mart́ın del Campo et al.
[2017], Daskalakis et al. [2018].
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Statistical motivation

Motivating Theorem, Barndorff [2014]

Suppose α ∈ R, φ : Rn 7→ R and Pµ(Rn) : prob. measures
on Rn, � µ. Then,

max
Pµ(Rn)

−
∫

p(x) log p(x) dµ(x) subject to Epφ(·) = α

is attained at uniquely at p∗θ(x) ∝ exp (θφ(x)) where
Ep∗θ

φ(·) = α.

Put constraints on pairwise weighted correlations (simple
interaction):

∑
i ,j wijσiσj (from the data). Then

p∗(σ) ∝ exp(β
∑

i ,j wijσiσj) ( (1) with B = 0).
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Literature Review

Recall, for τ ∈ {−1, 1}N ,

PN
β,B(σ = τ) :=

1

ZN(β,B)
exp

(
β

2d̄N
τ ′A(GN)τ + B

N∑
i=1

τi

)

(Main motivation): Basak and Mukherjee [2017] show
that,

1

N
log ZN(β,B) (2)

has an “universal limit” (free of the underlying graph
sequence) as long as GN is “approximately” regular
and d̄N diverges to ∞ with N .
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Regular graphs

AN := A(GN)/dN .

Note that (AN)ij = 1/dN if i and j are neighbors in
GN .

∑
j(AN)ij = di/dN = 1 for all i ∈ [N] (equivalently

1′AN = 1′) : (P1).

By Perron-Frobenius, λ1(AN) = 1 : (P2).
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An example of “Approximately regular” graphs

Suppose GN ∼ Erdős Rényi (N , pN) graph, with
pN � logN/N .

In this case,∑N
i=1(di/dN − 1)2 = oP(N/ logN) = oP(N) (rather

weak notion of regularity).

Our methods also work under random graphs, such as
Erdős Rényi above.

Lower bounds on the “extent of regularity”.
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Variational Approach to “universality”

Given QN(x) be a discrete measure supported on
{−1, 1}N . Then D(QN‖PN) equals,∑
x∈{−1,1}N

QN(x) log
QN(x)

PN(x)

=
∑

x∈{−1,1}N
QN(x) logQN(x)− β

2

∑
x∈{−1,1}N

QN(x)x′ANx

− B
∑

x∈{−1,1}N
QN(x)1′x + log ZN(β,B)
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Variational Approach towards “universality”

As D(·‖·) ≥ 0,

log ZN(β,B) ≥ EQN

{
β

2
x′ANx + B1′x− logQN(x)

}
.

for any QN(·).

Choose QN(x) as the measure induced by independent
±1 rv’s with mean vector m := (m1,m2, . . . ,mN).

log ZN(β,B) ≥ β

2
m′ANm +

N∑
i=1

(Bmi − I (mi))

for any m, where I (x) := 1+x
2

log 1+x
2

+ 1−x
2

log 1−x
2

is
the binary entropy function.
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Variational Approach towards “universality”

We are interested in

sup
m

β

2
m′ANm +

N∑
i=1

(Bmi − I (mi))

which (as of now) depends on the underlying graph.

Now restrict to “regular graphs”. By (P2),

sup
m

{
β

2
m′ANm +

N∑
i=1

(Bmi − I (mi))

}

≤ sup
m

N∑
i=1

{
β

2
m2

i + Bmi − I (mi)

}
which is decoupled.
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Variational Approach towards “universality”

The supremum on RHS is attained at m = t1′ where
t > 0 satisfies t = tanh(βt + B). Therefore,

sup
m

{
β

2
m′ANm +

N∑
i=1

(Bmi − I (mi))

}

≤ N

{
βt2

2
+ Bt − I (t)

}

By (P1), m′ANm = Nt2 at m = t1′. So,

sup
m

{
β

2
m′ANm +

N∑
i=1

(Bmi − I (mi))

}

= N

{
βt2

2
+ Bt − I (t)

}
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Variational Approach towards “universality”

Combining above observations,

log ZN(β,B)

N
≥ βt2

2
+ Bt − I (t) (3)

for regular graphs. The RHS above is often called
“mean-field prediction”.

Note that the right hand side no longer depends on
AN (“universality”) for the whole spectrum of (β,B).
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Actual Theorem

Theorem in Basak and Mukherjee [2017] (universality)

Under model (1) (and (A1)), if GN is a sequence of

“approximately” regular graphs, with d̄N
N→∞−→ ∞, then:

1

N
log ZN(β,B)

N→∞−→ sup
x

(
β

2
x2 + Bx − I (x)

)
.

(Lower bound) There are bounded degree graph
sequences for which the “mean-field prediction” does
not hold.
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Statistic of interest

A statistic of interest: TN = 1
N

∑
i σi .

Average alignment of magnetic spins.

Who wins the vote?

Is the behaviour of TN universal?
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Our goal

Show
universality

Can we weaken the

notion of regularity

to ‘‘approximate" regularity?

How far can

we go beyond

complete graphs?

How about

sparse graphs?

Cover the entire regime

of (β,B) - phase

transition
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Weak Limits

Proposition (universality)

Under model (1) (and (A1)), if GN is a sequence of

“approximately” regular graphs, with d̄N
N→∞−→ ∞, then:

1 If β ≤ 1,B = 0 or B > 0, then TN

PN
β,B−→ t.

2 If β > 1,B = 0 and GN , then

TN

PN
β,B−→

{
t w.p. 0.5

−t w.p. 0.5
.

Here t ≥ 0 is the maximizer of the RHS in (3). For
non-uniqueness, (A2) is required.
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A natural question

Does universality extend beyond ZN(β,B) and the weak
limits for TN?

N?(TN − t)
w−→ universal limit distributions

(perhaps after conditioning).
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Our results

Theorem 1 (universality)

Under model (1) (and (A1)), if GN is a sequence of

“approximately” regular graphs, with d̄N �
√
N , then:

(i). (Uniqueness) If β < 1,B = 0 or B > 0,√
N(TN − t)

d−→ N
(

0, 1−t2

1−β(1−t2)

)
.

(ii). (Non-uniqueness) If β > 1,B = 0 (and (A2) holds),√
N(TN − t)

∣∣TN > 0
d−→ N

(
0, 1−t2

1−β(1−t2)

)
.

(iii). (Critical) if B = 0, β = 1 (and (A2) holds),

N1/4TN
d−→ W ( density ∝ exp(−x4/12)).
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Is
√
N an artifact?

Can we have universal behaviour for d̄N ≤
√
N?

No! (
√
N is tight).

Eg. Consider d̄N = λ
√
N and GN as a disjoint union of

N/d̄N complete graphs, each of size d̄N , then we prove (for
B > 0):

√
N(TN − t)

w−→ N
(
µ(β,B)

λ
,

1− t2

1− β(1− t2)

)
.

µ(β,B) 6= 0 and free of λ.
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Some background

The same problem of fluctuations was studied in Ellis
and Newman [1978] when GN is a complete graph.
Our result strengthens it considerably.

In Löwe et al. [2018] and Berthet et al. [2016], the
authors study fluctuations in “block-spin Ising
models”.
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No universal behaviour for fluctuations?

Does this mean, at the fluctuation level, the entire
asymptotic regime (from Basak and Mukherjee [2017])
cannot be reproduced?

Under model (1),

E[σi |σ1, . . . , σi−1, σi+1, . . . , σN ] = tanh(βmi + B)

where mi =
∑

j aijσj (average response from neighbours).

Look at Sn := 1
N

∑
i(σi − tanh(βmi + B)). For bounded

d̄N , SN was analysed in Comets and Janžura [1998].
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Conditionally centered fluctuation

Theorem 2 (universality)

Under model (1) (and (A1)), if GN is a sequence of

“approximately” regular graphs, with d̄N
N→∞−→ ∞, then for

any (β,B):

√
NSN =

1√
N

∑
i

(σi − tanh(βmi + B))
d−→ N (0, τ 2).

Here τ 2 = (1− t2)(1− β(1− t2)). For the non-uniqueness
regime, (A2) is required.

When β = 1,B = 0 however, τ = 0. We expect in that
case, N3/4Sn = Op(1).
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“Ising” on the cake?

For Theorem 1, we actually get Berry-Esseen equivalents
for the weak-convergence, e.g., if β < 1,B = 0 or B > 0,
then:

sup
x
|P(
√
N(TN − t) ≤ x)− P(σZ ≤ x)| .

√
N/d̄N .

Here σ2 is the asymptotic variance from Theorem 1.
Same rates hold for the other regimes of (β,B).

1 If d̄N ≈ N (dense graphs), then RHS. N−1/2.

2 If d̄N ≈
√
N , then RHS. O(1) (we know that the

result is not true in this regime).



Fluctuations
in the

mean-field
Ising model

Nabarun Deb

Introduction

Introduction to
mean-field Ising
models

Examples

Motivation and
Applications

Theoretical
results

Introducing
“universality”

Main results

Further consequences

References

“Ising” on the cake?

For Theorem 1, we actually get Berry-Esseen equivalents
for the weak-convergence, e.g., if β < 1,B = 0 or B > 0,
then:

sup
x
|P(
√
N(TN − t) ≤ x)− P(σZ ≤ x)| .

√
N/d̄N .

Here σ2 is the asymptotic variance from Theorem 1.
Same rates hold for the other regimes of (β,B).

1 If d̄N ≈ N (dense graphs), then RHS. N−1/2.

2 If d̄N ≈
√
N , then RHS. O(1) (we know that the

result is not true in this regime).



Fluctuations
in the

mean-field
Ising model

Nabarun Deb

Introduction

Introduction to
mean-field Ising
models

Examples

Motivation and
Applications

Theoretical
results

Introducing
“universality”

Main results

Further consequences

References

More implications

1 In terms of parameter estimation (β,B), we improve
the existing results from Ghosal and Mukherjee [2018]
and Bhattacharya and Mukherjee [2018] (e.g.,
Extending impossibility regimes).

2 We prove that, marginally,

√
N(β̃ − β)

d−→ N
(

0,
1− β(1− t2)

1− t2

)
√
N(B̃ − B)

d−→ N
(

0,
1− β(1− t2)

1− t2

)
for certain regimes. β̃ represents pseudo-likelihood
estimator (for B known), see Besag [1986].
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Implications continued

Our results extend to graphs which are “approximately”
regular (with counterexamples showing tightness for the
extent of regularity). In addition to deterministic graphs,
we also cover:

1 Random d−regular graphs.

2 GN := Erdős-Rényi graph with parameters (N , pN) if
pN � (logN)N−1 .

3 GN := stochastic block model with balanced, possibly
growing, block sizes.

4 W−random graphons (where W (·) is regular).
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