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Introduction

Randomized trials – ‘randomization inference’ (Fisher, ’35)

Mean based estimators (e.g., difference-in-means) yield very wide

C.I.’s when potential outcomes are heavy-tailed or have outliers

Rank-based estimators are generally less sensitive to heavy-tails or

extreme observations

Rosenbaum (’93) proposed a Hodges-Lehmann type estimator

Theoretical study of this estimator was missing in the literature.

Numerical methods do not shed light on efficiency or robustness
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Our contributions

A systematic and rigorous study of the asymptotic properties of

Rosenbaum’s estimator.

Highlights:

Robustness against extreme observations

→ notion of breakdown point

Establishing its asymptotic distribution

→ weaker assumptions, also valid for heavy-tails

Consistent estimation of the asymptotic variance

→ asymptotically valid C.I.’s in analytic form

Efficiency relative to the difference-in-means estimator

→ an efficiency lower bound

Also study OLS adjusted version of Rosenbaum’s estimator

→ efficiency gain by regression adjustment
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The framework and estimation strategy
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The framework

Randomized trial: treatment group comprises m subjects chosen

uniformly at random from N subjects. Assume m/N → λ ∈ (0, 1).

Zi = treatment indicator, Yi = response for i-th subject, given by

Yi = Ziai + (1− Zi )bi ,

where ai and bi are the potential outcomes for the treated and

control, respectively. (Neyman, ’23; Rubin, ’74, ’77)

Constant additive treatment effect model: (Rosenbaum, ’93, ’02)

ai − bi = τ for each 1 ≤ i ≤ N.

(analog of location shift model in classical nonparametrics.

Non-constant treatment effect case at the end)Randomization inference: ai and bi are fixed, only Zi is random
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Rosenbaum’s estimator

Consider testing H0 : τ = τ0 versus H1 : τ ̸= τ0.

Under H0, Y − τ0Z = b, which is non-random → we can use any

statistic of the form t(Z ,Y − τ0Z ) to draw randomization inference

For a point estimate of τ , Rosenbaum (’02) suggested to invert the
above test. Following Hodges and Lehmann (’63), We set

τ̂∗ := sup {τ : t(Z ,Y − τZ ) > µ} , τ̂∗∗ := inf {τ : t(Z ,Y − τZ ) < µ} ,

where µ := Eτ0t(Z ,Y − τ0Z ), and define

τ̂R :=
τ̂∗ + τ̂∗∗

2
.

Note, τ̂R depends on our choice of the test statistic t(·, ·).
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The Wilcoxon rank-sum statistic

The Wilcoxon rank-sum (WRS) statistic is defined as

t(Z ,Y − τZ ) :=
∑

j :Zj=1

q
(τ)
j =

N∑
j=1

Zjq
(τ)
j ,

where

q
(τ)
j :=

N∑
i=1

1{Yi−τZi≤Yj−τZj}, 1 ≤ j ≤ N.

For rest of the talk, τ̂R will denote Rosenbaum’s estimator based on

the WRS statistic.
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Main theoretical results
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Robustness (Breakdown point)

Indices corresp. to the treatment and control groups are chosen by

randomization → need an appropriate definition of Breakdown point

What is the minimum proportion of potential outcomes that, if

replaced with arbitrarily extreme values, will cause the estimator to

be arbitrarily large, for all configurations of treatment assignments?

Proposition 1 (Asymptotic breakdown point of τ̂R)

Let τ̂R be Rosenbaum’s estimator based the Wilcoxon rank-sum statistic.

ABP(τ̂R) =


(1− λ)/2 if λ < 1/3

1−
√
2λ(1− λ) if 1/3 ≤ λ ≤ 2/3

λ/2 if λ > 2/3,

where λ is the limiting ratio of the treated group to the total sample size.

ABP(τ̂R) ≥ 1− 1/
√
2 ≈ 0.29 always; approaches 1/2 as λ → 0 or 1.
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Asymptotic distributions

Notations

We add a subscript N for the subsequent asymptotic results.

Potential outcomes {(aN,i , bN,i ) : 1 ≤ i ≤ N} are fixed, and

aN,i − bN,i = τ for each i .

ZN : treatment indicators, YN : observed responses.

Wilcoxon Rank-Sum (WRS) statistic for testing τ = τ0 is given by

tN ≡ tN(ZN ,YN − τ0ZN) := Z⊤
N qN ,

where

qN, j =
N∑
i=1

1{YN,i−τ0ZN,i≤YN,j−τ0ZN,j}, 1 ≤ j ≤ N.
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Asymptotic null distribution of the WRS statistic

Proposition 2 (Asymptotic null distribution of tN)

Assume that m/N → λ ∈ (0, 1), and that the ranks {qN, j} satisfy

1

N

N∑
j=1

(
qN, j − qN

)2
=

N2 − 1

12
+ o(N2),

where qN := N−1
∑N

j=1 qN, j . Then, under τ = τ0,

N−3/2 (tN −mqN)
d−→ N

(
0,

λ(1− λ)

12

)
.

Identical to the result under the infinite population setup.

Justifies Rosenbaum (’02)’s numerical method to find C.I.’s.

No moment assumption, and ties are allowed
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Asymptotic distribution of Rosenbaum’s estimator

Strategy: We show that if under τ = τN := τ0 − hN−1/2,

N−3/2 (tN − µN)
d−→ N (−hB,A2),

for every fixed h ∈ R, where µN := Eτ0tN and A,B > 0, then

√
N
(
τ̂R − τ0

) d−→ N (0, (A/B)2).

Thus, it suffices to find the asymptotic distribution of the WRS statistic

tN under the local alternatives τ = τN .
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Asymptotic distribution of tN under τ = τN

Challenges:

Under τ = τN ≡ τ0 − hN−1/2,

tN
d
= m +

N∑
j=1

ZN,j

N∑
i=1,i ̸=j

1{bN,i−hN−1/2ZN,i≤bN,j−hN−1/2ZN,j}.

linear combination of ZN,i ’s with random weights depending on

ZN,i ’s themselves. So, classical combinatorial CLTs do not apply.

Ranks are highly non-linear and not deterministic under τ = τN , so

methods similar to Li and Ding (’17) do not apply.

Le Cam’s method using contiguity is also not applicable.
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Asymptotic distribution of tN under τ = τN (Contd.)

Define

Ih,N(x) :=

1{0≤x<hN−1/2} if h ≥ 0,

−1{hN−1/2≤x<0} if h < 0.
(1)

Assumption 1

Assume that, for Ih,N as in (1), the following holds:

lim
N→∞

N−3/2
N∑
j=1

N∑
i=1

Ih,N(bN,j − bN,i ) = hIb,

for some Ib ∈ (0,∞), where bN,i ’s are the potential control outcomes.

e.g., if bN,i ’s are realizations from a density fb with
∫
R f 2b (x)dx < ∞,

then the above holds a.s. with Ib =
∫
R f 2b (x)dx .
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Local asymptotic normality of tN and asymptotic distribution of τ̂R

Theorem 1 (Local asymptotic normality of tN)

Let tN be the WRS statistic. Suppose that Assumption 1 holds. Fix

h ∈ R and let τN = τ0 − hN−1/2. Then, under τ = τN ,

N−3/2

(
tN − m(N + 1)

2

)
d−→ N

(
−hλ(1− λ)Ib,

λ(1− λ)

12

)
.

Theorem 2 (CLT for the estimator τ̂R)

Under Assumption 1, it holds that

√
N
(
τ̂R − τ0

) d−→ N
(
0, (12λ(1− λ)I2

b)
−1

)
.

Ib is defined in Assumption 1.
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Confidence interval for τ

Theorem 3 (Consistent estimation of Ib)

Let Assumption 1 hold and m/N → λ ∈ (0, 1). Then as N → ∞,

ÎN :=
(
1− m

N

)−2
N−3/2

∑
i ̸=j , ZN,i=ZN, j=0

1{0≤YN,j−YN,i<N−1/2}
P−→ Ib.

(2)

Corollary 4 (Confidence interval for τ)

Under Assumption 1, an approx. 100(1− α)% C.I. for τ is given by

τ̂R ±
zα/2√
N

(
12

m

N

(
1− m

N

)
Î2
N

)−1/2

where ÎN is as in (2) and zα is the upper α-th quantile of N (0, 1).
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Asymptotic relative efficiency

Definition 5 (Asymptotic relative efficiency)

Let τ̂N,1 and τ̂N,2 be two asymptotically normal estimators of τ , in the

sense that there exist positive sequences σ2
N,1 and σ2

N,2 such that

τ̂N,1 − τ

σN,1

d−→ N (0, 1), and
τ̂N,2 − τ

σN,2

d−→ N (0, 1).

Then the asymptotic relative efficiency of τ̂N,1 with respect to τ̂N,2 is

defined as

eff(τ̂N,1, τ̂N,2) := lim
N→∞

σ2
N,2

σ2
N,1

.
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Efficiency of τ̂R compared to τ̂dm

Theorem 6 (Efficiency lower bound, simplified)

Assume that the potential control outcomes {bN,j : 1 ≤ j ≤ N} are i.i.d.

samples from a distribution with density fb satisfying
∫
R f 2b (x)dx < ∞.

When the density fb(·) admits a finite variance σ2
b, the asymptotic

efficiency of τ̂R relative to τ̂dm is given by

eff(τ̂R, τ̂dm) = 12σ2
b

(∫
R
f 2b (x)dx

)2

.

Further, if F be the family of all probability densities on R, then

inf
F

eff(τ̂R, τ̂dm) ≥ 0.864.

A more general version, relaxing the i.i.d. assumption, is available in our paper.
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Efficiency of τ̂R compared to τ̂dm (Contd.)

Table 1: The values of eff(τ̂R, τ̂dm) for some common distributions

distribution density (fb) eff(τ̂R, τ̂dm)

Normal (2π)−1/2 exp(−x2/2) 3/π ≈ 0.955

Uniform 1{0≤x≤1} 1

Laplace 2−1 exp(−|x |) 3/2

t3 c
(
x2/3 + 1

)−2
75/(4π2) ≈ 1.9

Exponential exp(−x)1{x≥0} 3

Pareto(α) αx−(α+1)1{x≥1}

{
α5

(α−1)2(2α+1)2(α−2) if α > 2

+∞ if α ∈ (0, 2]
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Regression adjustment for covariates
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Regression adjusted test statistic

Along with the responses Yj ’s we also collect data on covariates

xj ∈ Rp. Let XN×p be the deterministic matrix of covariates.

To test H0 : τ = τ0 vs. H1 : τ ̸= τ0, first regress Y − τ0Z on X

Calculate the null residuals: e0 := (I − PX )(Y − τ0Z ).

Calculate the WRS statistic based on e0 (instead of Y − τ0Z )

tN,adj := tN(Z , e0) =
N∑
i=1

Zi

N∑
j=1

1{e0,j≤e0,i}.

tN,adj has the same null distribution as its unadjusted counterpart

tN (since e0 is non-random under H0, same proof applies).
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Rosenbaum’s regression adjusted estimator

Regress Y − τZ on X using ordinary least squares. Residuals:

eτ := (I − PX )(Y − τZ )

where PX is the projection matrix onto the column space of X .

As in unadjusted case, set τ̂∗adj := sup{τ : tN(Z , eτ ) > µ}, and
τ̂∗∗adj := inf{τ : tN(Z , eτ ) < µ}, and define

τ̂Radj :=
τ̂∗adj + τ̂∗∗adj

2
.
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Main theoretical results

(for the regression adjusted estimator)
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Asymptotic distributions

We add a subscript N for the subsequent asymptotic results.

Define

b̃N,j := bN,j − p⊤
N,jbN , 1 ≤ j ≤ N,

where pN,j is the j-th column of the projection matrix PXN
that

projects onto the column space of XN .

Under H0 : τ = τ0, the null residuals are given by:

(I − PXN
)(YN − τ0ZN) = (I − PXN

)bN = b̃N .

b̃N will play the role of bN in the unadjusted case.
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Asymptotic distribution of tN,adj under τ = τN (Contd.)

The following mimics Assumption 1 of the regression unadjusted case.

Assumption 2

Let b̃N,j := bN,j − p⊤
N,jbN , 1 ≤ j ≤ N. We assume that,

lim
N→∞

N−3/2
N∑
j=1

N∑
i=1

Ih,N(b̃N,j − b̃N,i ) = hJb,

for some fixed Jb ∈ (0,∞).

This holds in probability when bN = XNβN + εN , where εN,1, . . . , εN,N

are i.i.d. from N (0, σ2). In fact, Jb = (2
√
πσ)−1 in this case.
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Asymptotic distribution of τ̂Radj

Theorem 7 (Local asymptotic normality of tN,adj)

Let tN,adj be the regression adjusted WRS statistic. Suppose that

Assumption 2 holds. Fix h ∈ R and let τN = τ0 − hN−1/2. Then, under

τ = τN ,

N−3/2

(
tN,adj −

m(N + 1)

2

)
d−→ N

(
−hλ(1− λ)Jb,

λ(1− λ)

12

)
.

Theorem 8 (CLT for the estimator τ̂Radj)

Under Assumption 2, it holds that

√
N
(
τ̂Radj − τ0

) d−→ N
(
0, (12λ(1− λ)J 2

b )
−1

)
.

Jb is defined in Assumption 2.
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Efficiency gain by regression adjustment

Theorem 9 (Efficiency gain by regression adjustment)

Assume that the model bN = XNβN + εN holds, where εN,i ’s are i.i.d.

N (0, σ2). Then Assumption 2 holds, with Jb = (2
√
πσ)−1. Further,

with vN := XNβN , if limN→∞N−2
∑N

j=1

∑N
i=1 e

−(vN,j−vN,i )
2/4σ2

= ℓ,

then Assumption 1 holds with Ib = ℓJb, and consequently,

Jb ≥ Ib, i.e., eff(τ̂Radj, τ̂
R) ≥ 1.

Moreover, if lim infN→∞N−1
∑N

j=1(vN,j − vN)
2 > 0, then

Jb > Ib, i.e., eff(τ̂Radj, τ̂
R) > 1.
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What if treatment effect is not constant?

Confidence intervals with Rosenbaum’s estimator are sometimes

used in practice without constant treatment assumption. What is

the corresponding estimand?

Assume no regression adjustment

Set

medN := median{ai − bj : 1 ≤ i ̸= j ≤ N}.

Theorem 10 (Efficiency gain by regression adjustment)

Under appropriate assumptions, Rosenbaum’s estimator τ̂R satisfies

τ̂R −medN
P−→ 0.
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On our assumptions

The empirical median should be well separated.

For ϵ > 0, set

κ
(1)
N :=

1

N(N − 1)

∑
1≤i ̸=j≤N

1(ai − bj ≤ medN + ϵ) ≥ 1

2
.

Define κ
(2)
N similarly by replacing ≤ with ≥ and medN + ϵ with

medN − ϵ.

We need some gap (potentially vanishing) between κ
(1)
N , κ

(2)
N , and

1/2, i.e.,

√
N(κ

(1)
N − 0.5) → ∞,

√
N(0.5− κ

(2)
N ) → ∞.

Under stronger separability,
√
N(τ̂R −medN) = O0(1).
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Applications
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Application 1 : Progresa data

Aim to study the electoral impact of Progresa, Mexico’s conditional

cash transfer program (CCT program) (De La O, 2013; Imai, 2018).

Eligible villages were randomly assigned to receive the program

either 21 months (treated) or 6 months (control) before the 2000

Mexican presidential election.

417 observations each representing a precinct, and for each precinct

we have its treatment status, outcomes of interest, socioeconomic

indicators, and other precinct characteristics.
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Application 1 : Progresa data (Contd.)

We use the same regression model as De La O (2013), taking

outcome variable: pri2000s (support rates for the incumbent party

(PRI) as shares of the eligible voting population)

covariates:

– average poverty level in a precinct (avgpoverty)

– total precinct population in 1994 (pobtot1994)

– total no. of voters turned out in the previous election (votos1994)

– total no. of votes cast for each of the three main competing parties

in the previous election (pri1994, pan1994, and prd1994)

– include villages as factors.
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Application 1 : Progresa data (Contd.)

Table 2: Different estimates of the effect of early Progresa on PRI support rates
with the corresp. standard errors, 95% approximate C.I.’s and their lengths.

estimate std.error 95% C.I. length

τ̂R 1.834 0.446 [0.960, 2.707] 1.747

τ̂dm 3.622 1.728 [0.235, 7.010] 6.774

τ̂Radj 2.185 0.411 [1.380, 2.989] 1.610

τ̂adj 3.671 1.510 [0.712, 6.630] 5.917

τ̂interact 4.214 1.462 [1.348, 7.079] 5.731

Std. errors of τ̂R or τ̂Radj are much less than that of τ̂dm, τ̂adj, or τ̂interact.

Std. error of τ̂Radj is slightly less than that of τ̂R.

Each of the confidence intervals suggests that the CCT program led to a

significant positive increase in support for the incumbent party.
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Application 2 : House price data

Property sales for Mecklenburg County, North Carolina (Jan’94 –

Dec’04) source: replication files of Linden and Rockoff (’08)

Even after taking logarithm of house prices, the distribution is

heavily skewed on the right side.

Following Athey et al. (2021), we draw subsamples from the

dataset and randomly assign exactly half of each sample to the

treatment group and the remaining half to the control group.

Thus, we know apriori that the treatment effect is zero.
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Application 2 : House price data (Contd.)

We draw subsamples of size n = 1000 in each iteration, and take

the log of the house prices as the outcome variable.

Use several features of the houses (e.g., sales year, age of the

house, number of bedrooms, etc.) as covariates.

Model fit is quite satisfactory, with adjusted R2 ≈ 0.7.

The estimates, along with their standard errors and approximate

95% C.I.’s obtained from a single simulation are shown in Table 3.

Repeating this experiment B = 1000 times, we report the coverage

and average lengths of the C.I.’s in Table 4.
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Application 2 : House price data (Contd.)

Table 3: Results from a single simulation from the house price data

estimate std.error 95% C.I. length

τ̂R -0.04 0.03 [-0.09, 0.02] 0.12

τ̂dm -0.05 0.04 [-0.12, 0.03] 0.15

τ̂Radj -0.01 0.01 [-0.03, 0.02] 0.04

τ̂adj -0.02 0.02 [-0.06, 0.03] 0.08

τ̂interact -0.02 0.02 [-0.06, 0.03] 0.08

Table 4: Coverage and average lengths of the approximate 95% C.I.’s obtained
from different estimators by repeated simulations from the house price data

τ̂R τ̂dm τ̂Radj τ̂adj τ̂interact
coverage 0.944 0.959 0.954 0.952 0.949

avg length 0.121 0.143 0.041 0.073 0.073
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Thank You!

Questions?

Paper: https://arxiv.org/abs/2111.15524

(Major revision at Biometrika)

https://arxiv.org/abs/2111.15524

