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Multivariate distribution-free nonparametric testing

Consider the following nonparametric hypothesis testing problem:

Testing for equality of distributions (two-sample goodness-of-fit (GoF))

Data: {Xi}mi=1 iid P1 on Rd ; {Yj}nj=1 iid P2 on Rd , d ≥ 1.

Test if the two-samples came from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2.

When d = 1: Smirnov (1939), Smirnov (1939), Wald and
Wolfowitz (1940), Mann and Whitney (1947), Wilcoxon (1947).

When d > 1: Weiss (1960), Anderson (1962), Schilling (1986),
Rosenbaum (2005), Gretton et al. (2012), Székely and Rizzo (2013),
Biswas et al. (2014), Chen and Friedman (2017), Li and Yuan
(2019).



Exact distribution-freeness: A statistic is said to be exactly
distribution-free if its null distribution is universal (free of the
underlying data generation mechanism).

The tests should be consistent under minimal assumptions and also
be computationally feasible.

We can also handle testing for mutual independence and testing for
multivariate symmetry.



Ranks: When d = 1

Data: X1, . . . ,Xn iid on R (having a cont. distribution).

Rank map assigns {X1,X2, . . . ,Xn} to elements of { 1n ,
2
n , . . . ,

n
n}.

σ̂ := arg min
σ=(σ(1),...,σ(n))∈ Sn

∑n
i=1

∣∣Xi − σ(i)
n

∣∣2.
where Sn is the set of all permutations of {1, 2, . . . , n}.



Multivariate ranks (d ≥ 1)

Data: X1, . . . ,Xn iid on Rd (abs. cont. distribution)
Empirical rank map assigns {X1, . . . ,Xn} → {c1, . . . , cn} ⊂ [0, 1]d

— sequence of “uniform-like” points (quasi-Monte Carlo sequence)

σ̂ := arg min
σ=(σ(1),...,σ(n))∈ Sn

∑n
i=1 ‖Xi − cσ(i)‖2

Assignment problem (can be reduced to a linear program; can be
exactly solved using O(n3) Hungarian algorithm; some
approximations in Agarwal and Sharathkumar (2014)).



Data: X1, . . . ,Xn i.i.d. on Rd (abs. cont. distribution)

{c1, . . . , cn} ⊂ [0, 1]d — sequence of “uniform-like” points

σ̂ := arg min
σ=(σ(1),...,σ(n))∈ Sn

∑n
i=1 ‖Xi − cσ(i)‖2

Sample rank map: R̂n : {X1, . . . ,Xn} → {c1, . . . , cn} where

R̂n(Xi ) = cσ̂(i), i = 1, . . . , n

Distribution-free property (Similar result in Hallin 2017)

Suppose that X1, . . . ,Xn iid on Rd with abs. cont. distribution. Then,

(R̂n(X1), . . . , R̂n(Xn))

is uniformly distributed over the n! permutations of {c1, . . . , cn}.

This is the first step to obtaining distribution-free tests



Multivariate two-sample goodness-of-fit test

Testing for equality of multivariate distributions

Data: {Xi}mi=1 iid P1 on Rd ; {Yj}nj=1 iid P2 on Rd , both
absolutely continuous, d ≥ 1

Test if the two-samples come from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2

Start with a “good” test, say the energy statistic (Székely and
Rizzo, 2013).

Suppose X,X′
iid∼ P1, Y,Y′

iid∼ P2 and set h(s, t) := ‖s− t‖, then
energy distance between P1 and P2:

E 2(P1,P2) := 2Eh(X,Y)− Eh(X,X′)− Eh(Y,Y′) ≥ 0

Characterizes equality of distributions: E (P1,P2) = 0 iff P1 = P2



E-statistic: E 2
m,n

(
{Xi}mi=1, {Yj}nj=1

)
:= 2A− B − C where

A =
1

mn

m,n∑
i,j=1

h(Xi ,Yj), B =
1

m2

m∑
i,j=1

h(Xi ,Xj), C =
1

n2

n∑
i,j=1

h(Yi ,Yj)

Energy test: Reject H0 if Em,n

(
{Xi}mi=1, {Yj}nj=1

)
> κα

E 2
m,n

a.s.−→ E 2 under appropriate moment assumptions.

Critical value κα depends on P1 = P2!



Proposed statistic

Rank energy statistic [Deb and S. (2019)]

Joint rank map: The sample ranks of the pooled observations:

R̂m,n : {X1, . . . ,Xm,Y1, . . . ,Yn} → {c1, . . . , cm+n} ⊂ [0, 1]d

Rank energy: RE2
m,n := E 2

m,n

(
{R̂m,n(Xi )}mi=1, {R̂m,n(Yj)}nj=1

)
Distribution-freeness

Under H0, distribution of REm,n is free of P1 ≡ P2, if P1 is abs. cont.

Dist. of REm,n just depends on ci ’s, m, n and d

Rank energy test: Reject H0 if REm,n > κα (universal threshold,
free of P1 = P2).

The only other computationally feasible distribution-free test in this
context was proposed in Rosenbaum (2005). Another
distribution-free test from Biswas et al. (2014) is NP-hard.



Simplification for d = 1

RE2
m,n is exactly equivalent (constant multiple of) to the two-sample

Cramér-von Mises statistic.

Limiting distribution under H0

If (i) P1 ≡ P2 is abs. cont., and

(ii) 1
n

∑n
i=1 δci

w→ Uniform([0, 1]d) a.s.

Then, under H0, ∃ a universal distribution Dd s.t.

mn

m + n
RE2

m,n
d−→

∞∑
j=1

λjZ
2
j as min{m, n} → ∞ where λj ≥ 0.

Power

Under (ii) and P1 6= P2, if m/(m + n)→ λ ∈ (0, 1) then,

P(REm,n > κ(m,n)α )→ 1 as m, n→∞.

In fact, REm,n
a.s.−→ 0 a.s. iff P1 = P2.

Proposed test has asymptotic power 1, against all fixed alternatives



Pitman asymptotics

Consider X1, . . . ,Xm ∼ Pθ1 and Y1, . . . ,Yn ∼ Pθ2 , with
m/(m + n) = λ ∈ (0, 1). We want to test:

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = h(m + n)−1/2.

Fix a level parameter α and assume m/(m + n) = λ ∈ (0, 1).

Given a statistic Tm,n, one is interested in showing that:

PH1(Tm,n rejects H0) −→ α + g(h)

where g(h) > 0 if h 6= 0.



Crossmatch test (Rosenbaum 2005)

Pitman asymptotics for crossmatch test (Rosenbaum 2005)

Consider the testing set-up from before (with additional regularity
assumptions). Then, for any h, we have:

lim
m,n→∞

PH1(Tm,n rejects H0) = α.

Therefore, crossmatch test does not distinguish between the null and
the alternative at the contiguous scale.

The same phenomena happens for many other graph-based
asymptotically distribution-free tests, see Bhattacharya 2019,
Theorem 3.1



Rank energy test

Efficiency for rank energy test

Consider the testing set-up from before (with additional regularity
assumptions). Then, for any h, we have:

mn

m + n
RE2

m,n −→
∞∑
j=1

λj Z̃
2
j

where Z̃ 2
j has a non-central chi-squared distribution with non-centrality

parameter depending on h. In particular,

lim
m,n→∞

PH1(Tm,n rejects H0) > α.

Therefore, rank energy test does distinguish between the null and
the alternative at the contiguous scale.

In particular, the Pitman efficiency of rank energy test with respect
to the crossmatch test is therefore infinite.



Asymptotic stabilization

(100) (300) (500) (700) (900)

0.05 0.39 0.40 0.39 0.40 0.40

0.1 0.36 0.36 0.36 0.36 0.36

Table: Thresholds for α = 0.05, 0.1 and n = 100, 300, 500, 700, 900, d = 2.

(100) (300) (500) (700) (900)

0.05 1.37 1.38 1.38 1.38 1.38

0.1 1.34 1.35 1.35 1.35 1.35

Table: Thresholds for α = 0.05, 0.1 and n = 100, 300, 500, 700, 900, d = 8.



Summary

Multivariate distribution-free nonparametric testing procedures

Based on multivariate ranks defined using optimal transportation
(see Chernozhukhov et al. (2017), Hallin (2019).

Proposed a general framework, other examples may include testing
for symmetry, testing the equality of K -distributions, independence
testing ...

Tuning-free, computationally feasible procedures

The proposed tests are: (i) distribution-free and have good efficiency
in general, (ii) are more powerful for distributions with heavy tails,
and (iii) are robust to outliers & contamination

The corresponding paper —
https://arxiv.org/pdf/1909.08733.pdf.

https://arxiv.org/pdf/1909.08733.pdf




Power plot with varying location parameter
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Figure: (Left panel) X1,Y1 are i.i.d. normal with mean 0 and µ respectively
(and unit variance). X2,X3 ∼ X1,Y2,Y3 ∼ Y1 and X := (X1,X2,X3). Similarly
define Y.
(Right panel) U := (U1,U2,U3) and V := (V1,V2,V3) where Ui = exp(Xi ),
Vi = exp(Yi ) and X1,X2,X3,Y1,Y2,Y3 has the same distribution as above.
Red - Rank energy, Black - Crossmatch, Blue - Energy, Green - HHG.



More simulations

(RB) (HHG) (EN) (REN)

V1 0.13 0.15 0.13 0.34

V2 0.34 0.94 0.94 0.89

V3 0.41 0.34 0.34 0.46

V4 0.34 0.31 0.33 0.32

V5 0.73 0.70 0.56 0.93

V6 0.90 0.88 0.82 0.99

V7 0.13 0.51 0.65 0.63

V8 0.11 0.39 0.35 0.43

V9 0.06 1.00 0.97 1.00

V10 0.28 0.99 1.00 0.59

Table: Proportion of times the null hypothesis was rejected across 10 settings.
Here n = 200, d = 3. Here RB - Rosenbaum’s crossmatch test (Rosenbaum,
2005), HHG - Heller, Heller and Gorfine (Heller et al., 2013), En - energy
statistic (Székely and Rizzo, 2013).



Rank functions as transport maps: When d = 1

X ∼ F on R, F abs. cont. c.d.f.

Rank: The rank of x ∈ R is F (x) (aka the c.d.f. at x)

Property: F (X ) ∼ Uniform([0, 1])

Thus, F transports the distribution of X to U ∼ Uniform([0, 1])

In fact, if E[X 2] <∞, c.d.f. F is the optimal transport map as

F = arg min
T :T (X )

d
=U

E|X − T (X )|2

Sample rank map (aka empirical c.d.f.) is also a transport map:

R̂n := arg min
σ∈Sn

1

n

n∑
i=1

∣∣∣Xi −
σ(i)

n

∣∣∣2 = arg min
T

1

n

n∑
i=1

|Xi − T (Xi )|2

where T transports 1
n

∑n
i=1 δXi to 1

n

∑n
i=1 δ i

n



Multivariate rank functions as transport maps

X ∼ ν; ν is a probability measure in Rd (abs. cont.)

U ∼ Uniform([0, 1]d)

Goal: Find the “optimal” transport map T s.t. T(X)
d
= U

If E‖X‖2 <∞, the population rank function R(·) is the transport
map s.t.

R := arg min
T:T(X)

d
=U,X∼ν

E‖X− T(X)‖2

Data: X1, . . . ,Xn iid ν (abs. cont.) on Rd

{c1, . . . , cn} ⊂ [0, 1]d — sequence of “uniform-like” points

Sample multivariate rank map is defined as the tranport map s.t.

R̂n = arg min
σ∈Sn

1

n

n∑
i=1

‖Xi − cσ(i)‖2 ≡ arg min
T

1

n

n∑
i=1

‖Xi − T(Xi )‖2

where T transports 1
n

∑n
i=1 δXi to 1

n

∑n
i=1 δci



If E‖X‖2 <∞, the population rank function R(·) is defined as

R := arg min
T:T(X)

d
=U,X∼ν

E‖X− T(X)‖2

Even when E‖X‖2 = +∞, population rank function R(·) can also be
defined More details

Sample multivariate rank map R̂n(·) is defined as

R̂n = arg min
T

1

n

n∑
i=1

‖Xi − T(Xi )‖2

where T transports 1
n

∑n
i=1 δXi to 1

n

∑n
i=1 δci

Regularity: L2-convergence [Deb and S. (2019)]

X1, . . . ,Xn iid ν (abs. cont.). If 1
n

∑n
i=1 δci

w→ Unif([0, 1]d), then

1

n

n∑
i=1

‖R̂n(Xi )− R(Xi )‖
a.s.−→ 0 as n→∞.

Result gives the required regularity of the empirical multivariate rank map



Population version

Assume m/(m + n) = λ ∈ (0, 1).

Rank energy distance [Deb and S. (2019)]

Joint rank map: The “pooled” population rank map:

Rλ : Rλ(Z) ∼ Uniform([0, 1]d)

where Z ∼ λP1 + (1− λ)P2.

Rank energy: RE2
λ(P1,P2) := E 2(Rλ(X),Rλ(Y)).

REλ = 0 iff P1 = P2 provided P1, P2 are absolutely continuous.

Our general principle could have been used with any other procedure
for testing equality of distributions, e.g., the MMD statistic [Gretton
et al. (2008)] which uses ideas from RKHS, ...

For d = 1, we prove that RE2
m,n and RE2

λ are exactly equivalent to
the sample and population two-sample Cramér-von Mises statistic.



Pitman efficiency

Consider X1, . . . ,Xn ∼ Pθ1 and Y1, . . . ,Ym ∼ Pθ2 , with
m/(m + n) = λ ∈ (0, 1). We want to test:

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = h(m + n)−1/2.

Fix α (size) and γ > α (power).

Two test functions Tm,n and Sm,n.

K (Tm,n) denotes minimum number of samples such that:

EH0(Tm,n) ≤ α and EH1(Tm,n) ≥ γ.

The Pitman efficiency of Sm,n with respect to Tm,n is given by

lim
m+n→∞

K (Tm,n)

K (Sm,n)
.
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