
Generative modeling and Parabolic PDEs

Nabarun Deb
University of Chicago Booth School of Business

Indian Institute of Management, Bangalore

https://arxiv.org/pdf/2504.09279 (with Tengyuan Liang)

https://arxiv.org/pdf/2307.16421 (with Young-Heon Kim,
Soumik Pal, Geoffrey Schiebinger)

0 / 31

https://arxiv.org/pdf/2504.09279
https://arxiv.org/pdf/2307.16421

Problem motivation

0 / 31

What is generative modeling?

Suppose you have some complex data, perhaps images, speech, text,
market trends — Generative modeling tries to learn the data
generating process (DGP), typically a good approximation to it.

After learning, the model replicates the DGP to generate new, yet
realistic and diverse, data that resembles the original.

Generative modeling is not copying, it is creating.

1 / 31

What is generative modeling?

Suppose you have some complex data, perhaps images, speech, text,
market trends — Generative modeling tries to learn the data
generating process (DGP), typically a good approximation to it.

After learning, the model replicates the DGP to generate new, yet
realistic and diverse, data that resembles the original.

Generative modeling is not copying, it is creating.

1 / 31

What is generative modeling?

Suppose you have some complex data, perhaps images, speech, text,
market trends — Generative modeling tries to learn the data
generating process (DGP), typically a good approximation to it.

After learning, the model replicates the DGP to generate new, yet
realistic and diverse, data that resembles the original.

Generative modeling is not copying, it is creating.

1 / 31

What is “NOT” generative modeling

Distribution/density estimation

Kernels, wavelets, deep neural net based density estimation
It is not easy to generate new samples from an arbitrary density
function

Bootstrapping

Generates random samples with replacement from a dataset.
Powerful tool for estimating standard errors among other things
No “new” samples, simply copies existing data with different
multiplicities

Prediction models

Used when you have a specific question in mind — If my competitor
increases price by 100 Rs, should I do the same?
Generative modeling would track entire price trajectories

2 / 31

What is “NOT” generative modeling

Distribution/density estimation

Kernels, wavelets, deep neural net based density estimation
It is not easy to generate new samples from an arbitrary density
function

Bootstrapping

Generates random samples with replacement from a dataset.
Powerful tool for estimating standard errors among other things
No “new” samples, simply copies existing data with different
multiplicities

Prediction models

Used when you have a specific question in mind — If my competitor
increases price by 100 Rs, should I do the same?
Generative modeling would track entire price trajectories

2 / 31

What is “NOT” generative modeling

Distribution/density estimation

Kernels, wavelets, deep neural net based density estimation
It is not easy to generate new samples from an arbitrary density
function

Bootstrapping

Generates random samples with replacement from a dataset.
Powerful tool for estimating standard errors among other things
No “new” samples, simply copies existing data with different
multiplicities

Prediction models

Used when you have a specific question in mind — If my competitor
increases price by 100 Rs, should I do the same?
Generative modeling would track entire price trajectories

2 / 31

Why do we care?

3 / 31

Why do we care?

Sensory data poses the most significant challenge for generative modeling
— hard to get large scaled data sets — involves actual “contact” with

smell+temperature

4 / 31

Why do we care?

Sensory data poses the most significant challenge for generative modeling
— hard to get large scaled data sets — involves actual “contact” with

smell+temperature

4 / 31

The Math Behind Generative Modeling: Learning
Distributions

Suppose Z1,Z2, · · · ,Zn ∼ P (the data distribution)

Generative modeling tries to learn P from the data in a way that
makes it simple to simulate from P

One strategy is to learn a function G (a denoiser map) such that

G (Z) ≈ P

where Z is an “easy” distribution (like Normal).

Usually such G is
not unique and different criteria lead to different performance.

How to generate new samples??

First sample Z .

Apply the learned denoiser G (Z) to sample new data from P
(approximately).

5 / 31

The Math Behind Generative Modeling: Learning
Distributions

Suppose Z1,Z2, · · · ,Zn ∼ P (the data distribution)

Generative modeling tries to learn P from the data in a way that
makes it simple to simulate from P

One strategy is to learn a function G (a denoiser map) such that

G (Z) ≈ P

where Z is an “easy” distribution (like Normal). Usually such G is
not unique and different criteria lead to different performance.

How to generate new samples??

First sample Z .

Apply the learned denoiser G (Z) to sample new data from P
(approximately).

5 / 31

The Math Behind Generative Modeling: Learning
Distributions

Suppose Z1,Z2, · · · ,Zn ∼ P (the data distribution)

Generative modeling tries to learn P from the data in a way that
makes it simple to simulate from P

One strategy is to learn a function G (a denoiser map) such that

G (Z) ≈ P

where Z is an “easy” distribution (like Normal). Usually such G is
not unique and different criteria lead to different performance.

How to generate new samples??

First sample Z .

Apply the learned denoiser G (Z) to sample new data from P
(approximately).

5 / 31

Does denoising work in practice?

GPT prompt: Generate an image of an IIM Bangalore male and female
student inside a classroom

6 / 31

Does denoising work in practice?

GPT prompt: Generate an image of an IIM Bangalore male and female
student inside a classroom

6 / 31

Does denoising work in practice?

GPT prompt: Can you now generate picture of a male and a female IIMB
faculty member in an office party?

7 / 31

Does denoising work in practice?

GPT prompt: Can you now generate picture of a male and a female IIMB
faculty member in an office party?

7 / 31

How did that happen?

GPT prompt: What kind of model was used in training?

The image was generated using OpenAI’s DALL-E 3 model, which
creates visuals based on text prompts.

It was trained on billions of text-image pairs, using diffusion
techniques that teach the model to generate images by gradually
denoising from random patterns.

The training data includes publicly available and licensed sources,
ensuring a broad and diverse visual vocabulary.

8 / 31

How did that happen?

GPT prompt: What kind of model was used in training?

The image was generated using OpenAI’s DALL-E 3 model, which
creates visuals based on text prompts.

It was trained on billions of text-image pairs, using diffusion
techniques that teach the model to generate images by gradually
denoising from random patterns.

The training data includes publicly available and licensed sources,
ensuring a broad and diverse visual vocabulary.

8 / 31

How did that happen?

GPT prompt: What kind of model was used in training?

The image was generated using OpenAI’s DALL-E 3 model, which
creates visuals based on text prompts.

It was trained on billions of text-image pairs, using diffusion
techniques that teach the model to generate images by gradually
denoising from random patterns.

The training data includes publicly available and licensed sources,
ensuring a broad and diverse visual vocabulary.

8 / 31

How did that happen?

GPT prompt: What kind of model was used in training?

The image was generated using OpenAI’s DALL-E 3 model, which
creates visuals based on text prompts.

It was trained on billions of text-image pairs, using diffusion
techniques that teach the model to generate images by gradually
denoising from random patterns.

The training data includes publicly available and licensed sources,
ensuring a broad and diverse visual vocabulary.

8 / 31

Two approaches towards Generative Modeling

8 / 31

Generative adversarial networks — one shot approach

Think of GANs as a dynamic duo in a constant competition:
1 The Generator (Artist): Tries to create new, convincing ”fakes”

(e.g., realistic images, financial data).
2 The Discriminator (Critic): Tries to distinguish between the ”real”

data and the ”fake” data created by the Artist.

They learn by competing: The Artist gets better at fooling the
Critic, and the Critic gets better at spotting fakes.

9 / 31

Generative adversarial networks — one shot approach

Think of GANs as a dynamic duo in a constant competition:
1 The Generator (Artist): Tries to create new, convincing ”fakes”

(e.g., realistic images, financial data).
2 The Discriminator (Critic): Tries to distinguish between the ”real”

data and the ”fake” data created by the Artist.

They learn by competing: The Artist gets better at fooling the
Critic, and the Critic gets better at spotting fakes.

9 / 31

Generative adversarial networks — one shot approach

Think of GANs as a dynamic duo in a constant competition:
1 The Generator (Artist): Tries to create new, convincing ”fakes”

(e.g., realistic images, financial data).
2 The Discriminator (Critic): Tries to distinguish between the ”real”

data and the ”fake” data created by the Artist.

They learn by competing: The Artist gets better at fooling the
Critic, and the Critic gets better at spotting fakes.

9 / 31

Mathematical formulation

The generator has a candidate set of transformations or denoisers
gθ, indexed by some parameter θ (for e.g., a deep neural network).

The discriminator looks at the denoiser and computes a “distance”
(typically integral probability metrics) between the denoised
distribution and the data distribution. Remeber we want gθ(Z) close
to data distribution.

Large distance implies discriminator forces generator to choose a
different parameter.

(A minimax game)

inf
gθ

sup
f

|Ef (gθ(Z))− EX∼dataf (X)| .

Here Z is the noise variable.

10 / 31

Mathematical formulation

The generator has a candidate set of transformations or denoisers
gθ, indexed by some parameter θ (for e.g., a deep neural network).

The discriminator looks at the denoiser and computes a “distance”
(typically integral probability metrics) between the denoised
distribution and the data distribution. Remeber we want gθ(Z) close
to data distribution.

Large distance implies discriminator forces generator to choose a
different parameter.

(A minimax game)

inf
gθ

sup
f

|Ef (gθ(Z))− EX∼dataf (X)| .

Here Z is the noise variable.

10 / 31

Mathematical formulation

The generator has a candidate set of transformations or denoisers
gθ, indexed by some parameter θ (for e.g., a deep neural network).

The discriminator looks at the denoiser and computes a “distance”
(typically integral probability metrics) between the denoised
distribution and the data distribution. Remeber we want gθ(Z) close
to data distribution.

Large distance implies discriminator forces generator to choose a
different parameter.

(A minimax game)

inf
gθ

sup
f

|Ef (gθ(Z))− EX∼dataf (X)| .

Here Z is the noise variable.

10 / 31

Mathematical formulation

The generator has a candidate set of transformations or denoisers
gθ, indexed by some parameter θ (for e.g., a deep neural network).

The discriminator looks at the denoiser and computes a “distance”
(typically integral probability metrics) between the denoised
distribution and the data distribution. Remeber we want gθ(Z) close
to data distribution.

Large distance implies discriminator forces generator to choose a
different parameter.

(A minimax game)

inf
gθ

sup
f

|Ef (gθ(Z))− EX∼dataf (X)| .

Here Z is the noise variable.

10 / 31

More on GANs

Easy to sample: Once you have learned “the best” gθ from the
minimax game, sampling is just one-shot.

Z ∼ Noise, Sample gθ(Z).

Hard to learn: The minimax game is hard to solve because of
uncoupled data —

Leads to mode collapse where the generator produces very similar
images.

11 / 31

Enter Diffusion models

12 / 31

More on Diffusion models

Imagine starting with pure static or noise, like a blurry TV screen.

Unlike in GANs, these one-step denoisers involve “approximately
coupled data” which makes learning easier; no mode collapse

There’s no adversarial competition. It’s a single, guided process of
refinement.

Diffusion models work by gradually ”denoising” this random noise,
step-by-step, until a clear, coherent image (or other data) emerges.
Compared to GANs which are one-shot denoisers

Harder to sample as they are not one-step; usually takes more time
than GANs

13 / 31

More on Diffusion models

Imagine starting with pure static or noise, like a blurry TV screen.

Unlike in GANs, these one-step denoisers involve “approximately
coupled data” which makes learning easier; no mode collapse

There’s no adversarial competition. It’s a single, guided process of
refinement.

Diffusion models work by gradually ”denoising” this random noise,
step-by-step, until a clear, coherent image (or other data) emerges.
Compared to GANs which are one-shot denoisers

Harder to sample as they are not one-step; usually takes more time
than GANs

13 / 31

More on Diffusion models

Imagine starting with pure static or noise, like a blurry TV screen.

Unlike in GANs, these one-step denoisers involve “approximately
coupled data” which makes learning easier; no mode collapse

There’s no adversarial competition. It’s a single, guided process of
refinement.

Diffusion models work by gradually ”denoising” this random noise,
step-by-step, until a clear, coherent image (or other data) emerges.
Compared to GANs which are one-shot denoisers

Harder to sample as they are not one-step; usually takes more time
than GANs

13 / 31

More on Diffusion models

Imagine starting with pure static or noise, like a blurry TV screen.

Unlike in GANs, these one-step denoisers involve “approximately
coupled data” which makes learning easier; no mode collapse

There’s no adversarial competition. It’s a single, guided process of
refinement.

Diffusion models work by gradually ”denoising” this random noise,
step-by-step, until a clear, coherent image (or other data) emerges.

Compared to GANs which are one-shot denoisers

Harder to sample as they are not one-step; usually takes more time
than GANs

13 / 31

More on Diffusion models

Imagine starting with pure static or noise, like a blurry TV screen.

Unlike in GANs, these one-step denoisers involve “approximately
coupled data” which makes learning easier; no mode collapse

There’s no adversarial competition. It’s a single, guided process of
refinement.

Diffusion models work by gradually ”denoising” this random noise,
step-by-step, until a clear, coherent image (or other data) emerges.
Compared to GANs which are one-shot denoisers

Harder to sample as they are not one-step; usually takes more time
than GANs

13 / 31

More on Diffusion models

Imagine starting with pure static or noise, like a blurry TV screen.

Unlike in GANs, these one-step denoisers involve “approximately
coupled data” which makes learning easier; no mode collapse

There’s no adversarial competition. It’s a single, guided process of
refinement.

Diffusion models work by gradually ”denoising” this random noise,
step-by-step, until a clear, coherent image (or other data) emerges.
Compared to GANs which are one-shot denoisers

Harder to sample as they are not one-step; usually takes more time
than GANs

13 / 31

Our goal

GANs are easy to sample from (because one-shot) but are harder to
learn (due to uncoupled nature of the learning problem)

Diffusion models are harder to sample from (because sequential
nature) but are easier to learn (because successive points in the
sequence are “approximately coupled”)

New algorithm

Combine ease of sampling with ease of learning

A sequential algorithm where successive points are approximately
coupled but you only need the last transformation to sample

14 / 31

Our goal

GANs are easy to sample from (because one-shot) but are harder to
learn (due to uncoupled nature of the learning problem)

Diffusion models are harder to sample from (because sequential
nature) but are easier to learn (because successive points in the
sequence are “approximately coupled”)

New algorithm

Combine ease of sampling with ease of learning

A sequential algorithm where successive points are approximately
coupled but you only need the last transformation to sample

14 / 31

Our goal

GANs are easy to sample from (because one-shot) but are harder to
learn (due to uncoupled nature of the learning problem)

Diffusion models are harder to sample from (because sequential
nature) but are easier to learn (because successive points in the
sequence are “approximately coupled”)

New algorithm

Combine ease of sampling with ease of learning

A sequential algorithm where successive points are approximately
coupled but you only need the last transformation to sample

14 / 31

Our goal

GANs are easy to sample from (because one-shot) but are harder to
learn (due to uncoupled nature of the learning problem)

Diffusion models are harder to sample from (because sequential
nature) but are easier to learn (because successive points in the
sequence are “approximately coupled”)

New algorithm

Combine ease of sampling with ease of learning

A sequential algorithm where successive points are approximately
coupled but you only need the last transformation to sample

14 / 31

Optimal Transport and connection to generative
modeling

14 / 31

Wasserstein distance and optimal transport map

Marginals e−f , e−g densities on Rd . Minimize over coupling Π, i.e.,
all γ ∈ Π the first and second marginals of γ are e−f and e−g

respectively,

W2
2(e

−f , e−g) := inf
γ∈Π

[∫
∥y − x∥2 dγ

]
.

The optimal γ∞ is the law of (X ,Y) where Y = ∇ϕ∞(X) for some
convex function ϕ∞ : Rd → R.

We call ∇ϕ∞ the optimal transport (OT map) from e−f to e−g .

We will use the push-forward # notation, i.e., ∇ϕ∞#e−f = e−g

will imply that if Z ∼ e−f then ∇ϕ∞(Z) ∼ e−g .

15 / 31

Wasserstein distance and optimal transport map

Marginals e−f , e−g densities on Rd . Minimize over coupling Π, i.e.,
all γ ∈ Π the first and second marginals of γ are e−f and e−g

respectively,

W2
2(e

−f , e−g) := inf
γ∈Π

[∫
∥y − x∥2 dγ

]
.

The optimal γ∞ is the law of (X ,Y) where Y = ∇ϕ∞(X) for some
convex function ϕ∞ : Rd → R.

We call ∇ϕ∞ the optimal transport (OT map) from e−f to e−g .

We will use the push-forward # notation, i.e., ∇ϕ∞#e−f = e−g

will imply that if Z ∼ e−f then ∇ϕ∞(Z) ∼ e−g .

15 / 31

Wasserstein distance and optimal transport map

Marginals e−f , e−g densities on Rd . Minimize over coupling Π, i.e.,
all γ ∈ Π the first and second marginals of γ are e−f and e−g

respectively,

W2
2(e

−f , e−g) := inf
γ∈Π

[∫
∥y − x∥2 dγ

]
.

The optimal γ∞ is the law of (X ,Y) where Y = ∇ϕ∞(X) for some
convex function ϕ∞ : Rd → R.

We call ∇ϕ∞ the optimal transport (OT map) from e−f to e−g .

We will use the push-forward # notation, i.e., ∇ϕ∞#e−f = e−g

will imply that if Z ∼ e−f then ∇ϕ∞(Z) ∼ e−g .

15 / 31

Wasserstein distance and optimal transport map

Marginals e−f , e−g densities on Rd . Minimize over coupling Π, i.e.,
all γ ∈ Π the first and second marginals of γ are e−f and e−g

respectively,

W2
2(e

−f , e−g) := inf
γ∈Π

[∫
∥y − x∥2 dγ

]
.

The optimal γ∞ is the law of (X ,Y) where Y = ∇ϕ∞(X) for some
convex function ϕ∞ : Rd → R.

We call ∇ϕ∞ the optimal transport (OT map) from e−f to e−g .

We will use the push-forward # notation, i.e., ∇ϕ∞#e−f = e−g

will imply that if Z ∼ e−f then ∇ϕ∞(Z) ∼ e−g .

15 / 31

OT map in sampling/generative modeling

Target: Sample from e−g (data distribution)
Source: Some simple e−f which is easy to sample from (this is the
noise)

As ∇ϕ∞(Z) ∼ e−g , ∇ϕ∞ is a denoiser for generative modeling

Ease of sampling: What if we had ∇ϕ∞(·) or a good one-shot
estimator (GANs)? Sample Z1,Z2, . . . ∼ e−f and return
∇ϕ∞(Z1),∇ϕ∞(Z2), . . .

Estimating ∇ϕ∞ in one-shot can be hard (uncoupled data) — mode
collapse in Generative adversarial nets Thanh-Tung and Tran (2020)

Ease of learning: Many sequential approaches to generative
modeling — flow-based, diffusion-based, (approximately coupled
data) .. (see Kumar et al. (2019), Cheng et al. (2023), Huang et al.
(2021), Karras et al. (2022), ...)

One common theme — glue together OT maps over “small time
jumps” over a path on probability measures.

16 / 31

OT map in sampling/generative modeling

Target: Sample from e−g (data distribution)
Source: Some simple e−f which is easy to sample from (this is the
noise)

As ∇ϕ∞(Z) ∼ e−g , ∇ϕ∞ is a denoiser for generative modeling

Ease of sampling: What if we had ∇ϕ∞(·) or a good one-shot
estimator (GANs)? Sample Z1,Z2, . . . ∼ e−f and return
∇ϕ∞(Z1),∇ϕ∞(Z2), . . .

Estimating ∇ϕ∞ in one-shot can be hard (uncoupled data) — mode
collapse in Generative adversarial nets Thanh-Tung and Tran (2020)

Ease of learning: Many sequential approaches to generative
modeling — flow-based, diffusion-based, (approximately coupled
data) .. (see Kumar et al. (2019), Cheng et al. (2023), Huang et al.
(2021), Karras et al. (2022), ...)

One common theme — glue together OT maps over “small time
jumps” over a path on probability measures.

16 / 31

OT map in sampling/generative modeling

Target: Sample from e−g (data distribution)
Source: Some simple e−f which is easy to sample from (this is the
noise)

As ∇ϕ∞(Z) ∼ e−g , ∇ϕ∞ is a denoiser for generative modeling

Ease of sampling: What if we had ∇ϕ∞(·) or a good one-shot
estimator (GANs)? Sample Z1,Z2, . . . ∼ e−f and return
∇ϕ∞(Z1),∇ϕ∞(Z2), . . .

Estimating ∇ϕ∞ in one-shot can be hard (uncoupled data) — mode
collapse in Generative adversarial nets Thanh-Tung and Tran (2020)

Ease of learning: Many sequential approaches to generative
modeling — flow-based, diffusion-based, (approximately coupled
data) .. (see Kumar et al. (2019), Cheng et al. (2023), Huang et al.
(2021), Karras et al. (2022), ...)

One common theme — glue together OT maps over “small time
jumps” over a path on probability measures.

16 / 31

OT map in sampling/generative modeling

Target: Sample from e−g (data distribution)
Source: Some simple e−f which is easy to sample from (this is the
noise)

As ∇ϕ∞(Z) ∼ e−g , ∇ϕ∞ is a denoiser for generative modeling

Ease of sampling: What if we had ∇ϕ∞(·) or a good one-shot
estimator (GANs)? Sample Z1,Z2, . . . ∼ e−f and return
∇ϕ∞(Z1),∇ϕ∞(Z2), . . .

Estimating ∇ϕ∞ in one-shot can be hard (uncoupled data) — mode
collapse in Generative adversarial nets Thanh-Tung and Tran (2020)

Ease of learning: Many sequential approaches to generative
modeling — flow-based, diffusion-based, (approximately coupled
data) .. (see Kumar et al. (2019), Cheng et al. (2023), Huang et al.
(2021), Karras et al. (2022), ...)

One common theme — glue together OT maps over “small time
jumps” over a path on probability measures.

16 / 31

An example flow: Fokker-Planck

A popular path: {νt}t≥0 probability densities satisfying

∂tνt = ∇ · (νt(∇g +∇ log νt)) =⇒ ν∞ = e−g .

Illustration of flow —

Each T(k−1)ε,kε is the OT map from ν(k−1)ε to νkε.

How do we go from ν0 to νkε?

T = T(k−1)ε,kε ◦ T(k−2)ε,(k−1)ε ◦ . . . ◦ Tε,2ε ◦ T0,ε.

But composition of OT map is not OT. So, for large kε, T is not
close to ∇ϕ∞ (the OT map from e−f to e−g)

How about a flow on OT maps which recovers ∇ϕ∞ in the limit?

17 / 31

An example flow: Fokker-Planck

A popular path: {νt}t≥0 probability densities satisfying

∂tνt = ∇ · (νt(∇g +∇ log νt)) =⇒ ν∞ = e−g .

Illustration of flow —

Each T(k−1)ε,kε is the OT map from ν(k−1)ε to νkε.

How do we go from ν0 to νkε?

T = T(k−1)ε,kε ◦ T(k−2)ε,(k−1)ε ◦ . . . ◦ Tε,2ε ◦ T0,ε.

But composition of OT map is not OT. So, for large kε, T is not
close to ∇ϕ∞ (the OT map from e−f to e−g)

How about a flow on OT maps which recovers ∇ϕ∞ in the limit?

17 / 31

An example flow: Fokker-Planck

A popular path: {νt}t≥0 probability densities satisfying

∂tνt = ∇ · (νt(∇g +∇ log νt)) =⇒ ν∞ = e−g .

Illustration of flow —

Each T(k−1)ε,kε is the OT map from ν(k−1)ε to νkε.

How do we go from ν0 to νkε?

T = T(k−1)ε,kε ◦ T(k−2)ε,(k−1)ε ◦ . . . ◦ Tε,2ε ◦ T0,ε.

But composition of OT map is not OT. So, for large kε, T is not
close to ∇ϕ∞ (the OT map from e−f to e−g)

How about a flow on OT maps which recovers ∇ϕ∞ in the limit?

17 / 31

An example flow: Fokker-Planck

A popular path: {νt}t≥0 probability densities satisfying

∂tνt = ∇ · (νt(∇g +∇ log νt)) =⇒ ν∞ = e−g .

Illustration of flow —

Each T(k−1)ε,kε is the OT map from ν(k−1)ε to νkε.

How do we go from ν0 to νkε?

T = T(k−1)ε,kε ◦ T(k−2)ε,(k−1)ε ◦ . . . ◦ Tε,2ε ◦ T0,ε.

But composition of OT map is not OT. So, for large kε, T is not
close to ∇ϕ∞ (the OT map from e−f to e−g)

How about a flow on OT maps which recovers ∇ϕ∞ in the limit?

17 / 31

Parabolic Monge-Ampère

A flow which directly operates on the space of OT maps

Suppose ∇ϕ∞#e−f = e−g , then usual (static) Monge-Ampère
(MA) is just the change of variable formula —

f (x)− g(∇ϕ∞(x)) + log Det
(
∇2ϕ∞(x)

)
= 0.

Parabolic Monge-Ampère (PMA) is the dynamic version

∂tϕt(x) = f (x)− g(∇ϕt(x)) + log Det
(
∇2ϕt(x)

)
.

It is possible to identify the related continuity equation for a
sequence of probability measures {ρt}t≥0 such that ∇ϕt#ρt = e−g .

Under regularity assumptions on f , g , strong convexity of ϕ∞, and
of the initializer (say ϕ̃0), the PMA admits a smooth solution
{ϕ̃t}t≥0 (see Kitagawa (2010), Kim et al. (2010), Berman (2020))

Importantly, ∇ϕ̃t → ∇ϕ∞ (PMA converges to actual OT) and the
convergence is exponentially fast in t.

18 / 31

Parabolic Monge-Ampère

A flow which directly operates on the space of OT maps

Suppose ∇ϕ∞#e−f = e−g , then usual (static) Monge-Ampère
(MA) is just the change of variable formula —

f (x)− g(∇ϕ∞(x)) + log Det
(
∇2ϕ∞(x)

)
= 0.

Parabolic Monge-Ampère (PMA) is the dynamic version

∂tϕt(x) = f (x)− g(∇ϕt(x)) + log Det
(
∇2ϕt(x)

)
.

It is possible to identify the related continuity equation for a
sequence of probability measures {ρt}t≥0 such that ∇ϕt#ρt = e−g .

Under regularity assumptions on f , g , strong convexity of ϕ∞, and
of the initializer (say ϕ̃0), the PMA admits a smooth solution
{ϕ̃t}t≥0 (see Kitagawa (2010), Kim et al. (2010), Berman (2020))

Importantly, ∇ϕ̃t → ∇ϕ∞ (PMA converges to actual OT) and the
convergence is exponentially fast in t.

18 / 31

Parabolic Monge-Ampère

A flow which directly operates on the space of OT maps

Suppose ∇ϕ∞#e−f = e−g , then usual (static) Monge-Ampère
(MA) is just the change of variable formula —

f (x)− g(∇ϕ∞(x)) + log Det
(
∇2ϕ∞(x)

)
= 0.

Parabolic Monge-Ampère (PMA) is the dynamic version

∂tϕt(x) = f (x)− g(∇ϕt(x)) + log Det
(
∇2ϕt(x)

)
.

It is possible to identify the related continuity equation for a
sequence of probability measures {ρt}t≥0 such that ∇ϕt#ρt = e−g .

Under regularity assumptions on f , g , strong convexity of ϕ∞, and
of the initializer (say ϕ̃0), the PMA admits a smooth solution
{ϕ̃t}t≥0 (see Kitagawa (2010), Kim et al. (2010), Berman (2020))

Importantly, ∇ϕ̃t → ∇ϕ∞ (PMA converges to actual OT) and the
convergence is exponentially fast in t.

18 / 31

Parabolic Monge-Ampère

A flow which directly operates on the space of OT maps

Suppose ∇ϕ∞#e−f = e−g , then usual (static) Monge-Ampère
(MA) is just the change of variable formula —

f (x)− g(∇ϕ∞(x)) + log Det
(
∇2ϕ∞(x)

)
= 0.

Parabolic Monge-Ampère (PMA) is the dynamic version

∂tϕt(x) = f (x)− g(∇ϕt(x)) + log Det
(
∇2ϕt(x)

)
.

It is possible to identify the related continuity equation for a
sequence of probability measures {ρt}t≥0 such that ∇ϕt#ρt = e−g .

Under regularity assumptions on f , g , strong convexity of ϕ∞, and
of the initializer (say ϕ̃0), the PMA admits a smooth solution
{ϕ̃t}t≥0 (see Kitagawa (2010), Kim et al. (2010), Berman (2020))

Importantly, ∇ϕ̃t → ∇ϕ∞ (PMA converges to actual OT) and the
convergence is exponentially fast in t.

18 / 31

Parabolic Monge-Ampère

A flow which directly operates on the space of OT maps

Suppose ∇ϕ∞#e−f = e−g , then usual (static) Monge-Ampère
(MA) is just the change of variable formula —

f (x)− g(∇ϕ∞(x)) + log Det
(
∇2ϕ∞(x)

)
= 0.

Parabolic Monge-Ampère (PMA) is the dynamic version

∂tϕt(x) = f (x)− g(∇ϕt(x)) + log Det
(
∇2ϕt(x)

)
.

It is possible to identify the related continuity equation for a
sequence of probability measures {ρt}t≥0 such that ∇ϕt#ρt = e−g .

Under regularity assumptions on f , g , strong convexity of ϕ∞, and
of the initializer (say ϕ̃0), the PMA admits a smooth solution
{ϕ̃t}t≥0 (see Kitagawa (2010), Kim et al. (2010), Berman (2020))

Importantly, ∇ϕ̃t → ∇ϕ∞ (PMA converges to actual OT) and the
convergence is exponentially fast in t.

18 / 31

Parabolic Monge-Ampère

A flow which directly operates on the space of OT maps

Suppose ∇ϕ∞#e−f = e−g , then usual (static) Monge-Ampère
(MA) is just the change of variable formula —

f (x)− g(∇ϕ∞(x)) + log Det
(
∇2ϕ∞(x)

)
= 0.

Parabolic Monge-Ampère (PMA) is the dynamic version

∂tϕt(x) = f (x)− g(∇ϕt(x)) + log Det
(
∇2ϕt(x)

)
.

It is possible to identify the related continuity equation for a
sequence of probability measures {ρt}t≥0 such that ∇ϕt#ρt = e−g .

Under regularity assumptions on f , g , strong convexity of ϕ∞, and
of the initializer (say ϕ̃0), the PMA admits a smooth solution
{ϕ̃t}t≥0 (see Kitagawa (2010), Kim et al. (2010), Berman (2020))

Importantly, ∇ϕ̃t → ∇ϕ∞ (PMA converges to actual OT) and the
convergence is exponentially fast in t.

18 / 31

Illustration for generative modeling

Let ϕ̃∗t denote the convex conjugate of ϕ̃t (solution of PMA).

Define ρt = ∇ϕ̃∗t#e−g

Set ϕ̃0(x) = ∥x∥2/2, implies ϕ̃∗0(y) = ∥y∥2/2.

Illustration of flow —

Each ∇ϕ̃kε is the OT map from ρkε to e−g .

19 / 31

Illustration for generative modeling

Let ϕ̃∗t denote the convex conjugate of ϕ̃t (solution of PMA).

Define ρt = ∇ϕ̃∗t#e−g

Set ϕ̃0(x) = ∥x∥2/2, implies ϕ̃∗0(y) = ∥y∥2/2.

Illustration of flow —

Each ∇ϕ̃kε is the OT map from ρkε to e−g .

19 / 31

Illustration for generative modeling

Let ϕ̃∗t denote the convex conjugate of ϕ̃t (solution of PMA).

Define ρt = ∇ϕ̃∗t#e−g

Set ϕ̃0(x) = ∥x∥2/2, implies ϕ̃∗0(y) = ∥y∥2/2.

Illustration of flow —

Each ∇ϕ̃kε is the OT map from ρkε to e−g .

19 / 31

Illustration for generative modeling

Let ϕ̃∗t denote the convex conjugate of ϕ̃t (solution of PMA).

Define ρt = ∇ϕ̃∗t#e−g

Set ϕ̃0(x) = ∥x∥2/2, implies ϕ̃∗0(y) = ∥y∥2/2.

Illustration of flow —

Each ∇ϕ̃kε is the OT map from ρkε to e−g .

19 / 31

Illustration for generative modeling

Let ϕ̃∗t denote the convex conjugate of ϕ̃t (solution of PMA).

Define ρt = ∇ϕ̃∗t#e−g

Set ϕ̃0(x) = ∥x∥2/2, implies ϕ̃∗0(y) = ∥y∥2/2.

Illustration of flow —

Each ∇ϕ̃kε is the OT map from ρkε to e−g .

19 / 31

Illustration for generative modeling

Let ϕ̃∗t denote the convex conjugate of ϕ̃t (solution of PMA).

Define ρt = ∇ϕ̃∗t#e−g

Set ϕ̃0(x) = ∥x∥2/2, implies ϕ̃∗0(y) = ∥y∥2/2.

Illustration of flow —

Each ∇ϕ̃kε is the OT map from ρkε to e−g .

19 / 31

Difference with existing approaches

Discretizing PMA can be viewed as a new approach to generative
modeling that combines ease of sampling with ease of learning.

Ease of sampling: Generate samples Z1, ...,Zn from e−f (easy to
generate). Construct ∇ϕ̃kε for appropriate k, ϵ. Then
∇ϕ̃kε(Zi) ≈ e−g (No need for function composition).

Ease of learning: Two successive iterations are optimally coupled
with respect to a time varying cost (see D. and Liang (2025)). Each
∇ϕ̃kε is close to ∇ϕ̃(k−1)ε and the updates can be tracked with
score matching techniques as well.

A natural goal therefore is to discretize the PMA.

20 / 31

Difference with existing approaches

Discretizing PMA can be viewed as a new approach to generative
modeling that combines ease of sampling with ease of learning.

Ease of sampling: Generate samples Z1, ...,Zn from e−f (easy to
generate). Construct ∇ϕ̃kε for appropriate k , ϵ. Then
∇ϕ̃kε(Zi) ≈ e−g (No need for function composition).

Ease of learning: Two successive iterations are optimally coupled
with respect to a time varying cost (see D. and Liang (2025)). Each
∇ϕ̃kε is close to ∇ϕ̃(k−1)ε and the updates can be tracked with
score matching techniques as well.

A natural goal therefore is to discretize the PMA.

20 / 31

Difference with existing approaches

Discretizing PMA can be viewed as a new approach to generative
modeling that combines ease of sampling with ease of learning.

Ease of sampling: Generate samples Z1, ...,Zn from e−f (easy to
generate). Construct ∇ϕ̃kε for appropriate k , ϵ. Then
∇ϕ̃kε(Zi) ≈ e−g (No need for function composition).

Ease of learning: Two successive iterations are optimally coupled
with respect to a time varying cost (see D. and Liang (2025)). Each
∇ϕ̃kε is close to ∇ϕ̃(k−1)ε and the updates can be tracked with
score matching techniques as well.

A natural goal therefore is to discretize the PMA.

20 / 31

Difference with existing approaches

Discretizing PMA can be viewed as a new approach to generative
modeling that combines ease of sampling with ease of learning.

Ease of sampling: Generate samples Z1, ...,Zn from e−f (easy to
generate). Construct ∇ϕ̃kε for appropriate k , ϵ. Then
∇ϕ̃kε(Zi) ≈ e−g (No need for function composition).

Ease of learning: Two successive iterations are optimally coupled
with respect to a time varying cost (see D. and Liang (2025)). Each
∇ϕ̃kε is close to ∇ϕ̃(k−1)ε and the updates can be tracked with
score matching techniques as well.

A natural goal therefore is to discretize the PMA.

20 / 31

Difference with existing approaches

Discretizing PMA can be viewed as a new approach to generative
modeling that combines ease of sampling with ease of learning.

Ease of sampling: Generate samples Z1, ...,Zn from e−f (easy to
generate). Construct ∇ϕ̃kε for appropriate k , ϵ. Then
∇ϕ̃kε(Zi) ≈ e−g (No need for function composition).

Ease of learning: Two successive iterations are optimally coupled
with respect to a time varying cost (see D. and Liang (2025)). Each
∇ϕ̃kε is close to ∇ϕ̃(k−1)ε and the updates can be tracked with
score matching techniques as well.

A natural goal therefore is to discretize the PMA.

20 / 31

Time discretization for PMA using Sinkhorn
algorithm scaling limits

20 / 31

Entropy regularized OT

Marginals e−f , e−g densities. Minimize over coupling Π, i.e., all
γ ∈ Π the first and second marginals of γ are e−f and e−g

respectively,

W2
2(e

−f , e−g) := inf
γ∈Π

[∫
∥y − x∥2 dγ

]
.

As mentioned before, the optimal coupling above is degenerate and
hard to compute.

Entropy as a measure of degeneracy:

Ent(h) :=

{∫
h(x) log h(x)dx , for density h,

∞, otherwise.

Example: Entropy of N(0, σ2) is − log σ+ constant.

21 / 31

Entropy regularized OT

Marginals e−f , e−g densities. Minimize over coupling Π, i.e., all
γ ∈ Π the first and second marginals of γ are e−f and e−g

respectively,

W2
2(e

−f , e−g) := inf
γ∈Π

[∫
∥y − x∥2 dγ

]
.

As mentioned before, the optimal coupling above is degenerate and
hard to compute.

Entropy as a measure of degeneracy:

Ent(h) :=

{∫
h(x) log h(x)dx , for density h,

∞, otherwise.

Example: Entropy of N(0, σ2) is − log σ+ constant.

21 / 31

Entropic regularization

Figure: Image by M. Cuturi

Föllmer ’88, Cuturi ’13, Gigli ’19 ... suggested penalizing MK OT
with entropy.

EOTϵ(e
−f , e−g) = inf

γ∈Π

[∫
∥y − x∥2 dγ + ϵEnt(γ)

]
.

22 / 31

Structure of the solution

The optimal coupling (Rüschendorf & Thomsen ’93) γϵ must be of
the form

γϵ(x , y) = exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕε(x)− 1

ε
ψε(y)− f (x)− g(y)

)
.

ϕϵ, ψϵ - Schrödinger potentials. Unique up to constant.

Typically not explicit. Determined by marginal constraints∫
γϵ(x , y)dy = e−f (x),

∫
γε(x , y)dx = e−g(y).

This gives the fixed point system

ϕε(x) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ψε(y)− g(y)

)
dy ,

ψε(y) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕε(x)− f (x)

)
dx .

23 / 31

Structure of the solution

The optimal coupling (Rüschendorf & Thomsen ’93) γϵ must be of
the form

γϵ(x , y) = exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕε(x)− 1

ε
ψε(y)− f (x)− g(y)

)
.

ϕϵ, ψϵ - Schrödinger potentials. Unique up to constant.

Typically not explicit. Determined by marginal constraints∫
γϵ(x , y)dy = e−f (x),

∫
γε(x , y)dx = e−g(y).

This gives the fixed point system

ϕε(x) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ψε(y)− g(y)

)
dy ,

ψε(y) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕε(x)− f (x)

)
dx .

23 / 31

Sinkhorn/IPFP algorithm

An iterative approach to solving the fixed point system and produces
a sequence of “couplings”.

For k ≥ 1,

ψε
k(y) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕεk−1(x)− f (x)

)
dx ,

ϕεk(x) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ψε
k(y)− g(y)

)
dy .

The corresponding probability distribution

γεk (x , y) = exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕεk−1(x)−

1

ε
ψε
k(y)− f (x)− g(y)

)
couples its X and Y marginals given by

pXγ
ε
k (x) = exp

(
1

ε
(ϕεk − ϕεk−1)(x)

)
, pY γ

ε
k (y) = exp(−g(y)).

Do gradient of Sinkhorn potentials ∇ϕε
k approximate gradient of PMA ∇ϕ̃t?

24 / 31

Sinkhorn/IPFP algorithm

An iterative approach to solving the fixed point system and produces
a sequence of “couplings”.

For k ≥ 1,

ψε
k(y) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕεk−1(x)− f (x)

)
dx ,

ϕεk(x) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ψε
k(y)− g(y)

)
dy .

The corresponding probability distribution

γεk (x , y) = exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕεk−1(x)−

1

ε
ψε
k(y)− f (x)− g(y)

)
couples its X and Y marginals given by

pXγ
ε
k (x) = exp

(
1

ε
(ϕεk − ϕεk−1)(x)

)
, pY γ

ε
k (y) = exp(−g(y)).

Do gradient of Sinkhorn potentials ∇ϕε
k approximate gradient of PMA ∇ϕ̃t?

24 / 31

Sinkhorn/IPFP algorithm

An iterative approach to solving the fixed point system and produces
a sequence of “couplings”.

For k ≥ 1,

ψε
k(y) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕεk−1(x)− f (x)

)
dx ,

ϕεk(x) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ψε
k(y)− g(y)

)
dy .

The corresponding probability distribution

γεk (x , y) = exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕεk−1(x)−

1

ε
ψε
k(y)− f (x)− g(y)

)
couples its X and Y marginals given by

pXγ
ε
k (x) = exp

(
1

ε
(ϕεk − ϕεk−1)(x)

)
, pY γ

ε
k (y) = exp(−g(y)).

Do gradient of Sinkhorn potentials ∇ϕε
k approximate gradient of PMA ∇ϕ̃t?

24 / 31

Sinkhorn/IPFP algorithm

An iterative approach to solving the fixed point system and produces
a sequence of “couplings”.

For k ≥ 1,

ψε
k(y) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕεk−1(x)− f (x)

)
dx ,

ϕεk(x) = ε log

∫
exp

(
1

ε
⟨x , y⟩ − 1

ε
ψε
k(y)− g(y)

)
dy .

The corresponding probability distribution

γεk (x , y) = exp

(
1

ε
⟨x , y⟩ − 1

ε
ϕεk−1(x)−

1

ε
ψε
k(y)− f (x)− g(y)

)
couples its X and Y marginals given by

pXγ
ε
k (x) = exp

(
1

ε
(ϕεk − ϕεk−1)(x)

)
, pY γ

ε
k (y) = exp(−g(y)).

Do gradient of Sinkhorn potentials ∇ϕε
k approximate gradient of PMA ∇ϕ̃t?

24 / 31

Some nice properties of Sinkhorn algorithm

Sample computation — Suppose we only have data from either e−f

or e−g or both, then ϕεk(x) and ψ
ε
k(y) can be computed with

empirical averages.

Fast computation — see Cuturi (2013), Rubner et al. (1997), Pele
and Werman (2009).

Gradient-free nature — Note that updates of PMA

∂t ϕ̃t(x) = f (x)− g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x))

require gradient computation of ϕ̃t . However updating ϕ
ε
k , ψ

ε
k from

the past iterates in Sinkhorn requires no gradient computation.

Not so nice - Instabilities for small ϵ.

25 / 31

Some nice properties of Sinkhorn algorithm

Sample computation — Suppose we only have data from either e−f

or e−g or both, then ϕεk(x) and ψ
ε
k(y) can be computed with

empirical averages.

Fast computation — see Cuturi (2013), Rubner et al. (1997), Pele
and Werman (2009).

Gradient-free nature — Note that updates of PMA

∂t ϕ̃t(x) = f (x)− g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x))

require gradient computation of ϕ̃t . However updating ϕ
ε
k , ψ

ε
k from

the past iterates in Sinkhorn requires no gradient computation.

Not so nice - Instabilities for small ϵ.

25 / 31

Some nice properties of Sinkhorn algorithm

Sample computation — Suppose we only have data from either e−f

or e−g or both, then ϕεk(x) and ψ
ε
k(y) can be computed with

empirical averages.

Fast computation — see Cuturi (2013), Rubner et al. (1997), Pele
and Werman (2009).

Gradient-free nature — Note that updates of PMA

∂t ϕ̃t(x) = f (x)− g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x))

require gradient computation of ϕ̃t .

However updating ϕεk , ψ
ε
k from

the past iterates in Sinkhorn requires no gradient computation.

Not so nice - Instabilities for small ϵ.

25 / 31

Some nice properties of Sinkhorn algorithm

Sample computation — Suppose we only have data from either e−f

or e−g or both, then ϕεk(x) and ψ
ε
k(y) can be computed with

empirical averages.

Fast computation — see Cuturi (2013), Rubner et al. (1997), Pele
and Werman (2009).

Gradient-free nature — Note that updates of PMA

∂t ϕ̃t(x) = f (x)− g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x))

require gradient computation of ϕ̃t . However updating ϕ
ε
k , ψ

ε
k from

the past iterates in Sinkhorn requires no gradient computation.

Not so nice - Instabilities for small ϵ.

25 / 31

Some nice properties of Sinkhorn algorithm

Sample computation — Suppose we only have data from either e−f

or e−g or both, then ϕεk(x) and ψ
ε
k(y) can be computed with

empirical averages.

Fast computation — see Cuturi (2013), Rubner et al. (1997), Pele
and Werman (2009).

Gradient-free nature — Note that updates of PMA

∂t ϕ̃t(x) = f (x)− g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x))

require gradient computation of ϕ̃t . However updating ϕ
ε
k , ψ

ε
k from

the past iterates in Sinkhorn requires no gradient computation.

Not so nice - Instabilities for small ϵ.

25 / 31

Correct scaling for limits

By Berman (2020), Léger (2020), Aubin-Frankowski et al. (2022), it
follows:

(H∗
ϵ)

′(γϵk+1)− (H∗
ϵ)

′(γϵk) = −KL′(pXγ
ε
k |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation.

No missing ϵ on RHS

This reminds us of usual gradient descent:

xk+1 − xk = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have xϵt/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

Study the approximation ∇ϕε
k ≈ ∇ϕ̃t when k = t/ε?

26 / 31

Correct scaling for limits

By Berman (2020), Léger (2020), Aubin-Frankowski et al. (2022), it
follows:

(H∗
ϵ)

′(γϵk+1)− (H∗
ϵ)

′(γϵk) = −KL′(pXγ
ε
k |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation. No missing ϵ on RHS

This reminds us of usual gradient descent:

xk+1 − xk = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have xϵt/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

Study the approximation ∇ϕε
k ≈ ∇ϕ̃t when k = t/ε?

26 / 31

Correct scaling for limits

By Berman (2020), Léger (2020), Aubin-Frankowski et al. (2022), it
follows:

(H∗
ϵ)

′(γϵk+1)− (H∗
ϵ)

′(γϵk) = −KL′(pXγ
ε
k |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation. No missing ϵ on RHS

This reminds us of usual gradient descent:

xk+1 − xk = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have xϵt/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

Study the approximation ∇ϕε
k ≈ ∇ϕ̃t when k = t/ε?

26 / 31

Correct scaling for limits

By Berman (2020), Léger (2020), Aubin-Frankowski et al. (2022), it
follows:

(H∗
ϵ)

′(γϵk+1)− (H∗
ϵ)

′(γϵk) = −KL′(pXγ
ε
k |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation. No missing ϵ on RHS

This reminds us of usual gradient descent:

xk+1 − xk = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have xϵt/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

Study the approximation ∇ϕε
k ≈ ∇ϕ̃t when k = t/ε?

26 / 31

Correct scaling for limits

By Berman (2020), Léger (2020), Aubin-Frankowski et al. (2022), it
follows:

(H∗
ϵ)

′(γϵk+1)− (H∗
ϵ)

′(γϵk) = −KL′(pXγ
ε
k |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation. No missing ϵ on RHS

This reminds us of usual gradient descent:

xk+1 − xk = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have xϵt/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

Study the approximation ∇ϕε
k ≈ ∇ϕ̃t when k = t/ε?

26 / 31

Main results

Recall that ϕ̃t is used to denote solution of the PMA

∂t ϕ̃t = f (x)− g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x)).

Set ρt = ∇ϕ̃∗t#e−g .

Also ϕεk , ψ
ε
ks are potentials from Sinkhorn and γεk is

the corresponding coupling.

Scaling limit for ∇ϕεt/ε and γεt/ε

Under regularity assumptions on the PMA and appropriate initialization,
we have

lim
ε→0

1

ε
∇(ϕεt/ε − ϕ̃t)(x) =

1

2
∇f (x) +∇ log ρt(x).

27 / 31

Main results

Recall that ϕ̃t is used to denote solution of the PMA

∂t ϕ̃t = f (x)− g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x)).

Set ρt = ∇ϕ̃∗t#e−g . Also ϕεk , ψ
ε
ks are potentials from Sinkhorn and γεk is

the corresponding coupling.

Scaling limit for ∇ϕεt/ε and γεt/ε

Under regularity assumptions on the PMA and appropriate initialization,
we have

lim
ε→0

1

ε
∇(ϕεt/ε − ϕ̃t)(x) =

1

2
∇f (x) +∇ log ρt(x).

27 / 31

Main results

Recall that ϕ̃t is used to denote solution of the PMA

∂t ϕ̃t = f (x)− g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x)).

Set ρt = ∇ϕ̃∗t#e−g . Also ϕεk , ψ
ε
ks are potentials from Sinkhorn and γεk is

the corresponding coupling.

Scaling limit for ∇ϕεt/ε and γεt/ε

Under regularity assumptions on the PMA and appropriate initialization,
we have

lim
ε→0

1

ε
∇(ϕεt/ε − ϕ̃t)(x) =

1

2
∇f (x) +∇ log ρt(x).

27 / 31

Comparison with existing works

In Berman (2020), it was shown that

ϕεt/ε − ϕ̃t = O(ε)

which by reverse Poincaré type inequality implies

∇ϕεt/ε −∇ϕ̃t = O(
√
ε).

This can be extended to O(ε).

In Deb et al. (2023), we show that

1

ε
(ϕεt/ε − ϕεt/ε−1)(x)− f (x) → −g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x))

in a weak sense. Recall that

LHS = log ρεt/ε, and RHS = log ρt .

Then Deb et al. (2023) shows

W2(ρ
ε
t/ε, ρt) → 0.

Based on current bounds this can be improved to KL instead of
Wasserstein.

28 / 31

Comparison with existing works

In Berman (2020), it was shown that

ϕεt/ε − ϕ̃t = O(ε)

which by reverse Poincaré type inequality implies

∇ϕεt/ε −∇ϕ̃t = O(
√
ε).

This can be extended to O(ε).

In Deb et al. (2023), we show that

1

ε
(ϕεt/ε − ϕεt/ε−1)(x)− f (x) → −g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x))

in a weak sense.

Recall that

LHS = log ρεt/ε, and RHS = log ρt .

Then Deb et al. (2023) shows

W2(ρ
ε
t/ε, ρt) → 0.

Based on current bounds this can be improved to KL instead of
Wasserstein.

28 / 31

Comparison with existing works

In Berman (2020), it was shown that

ϕεt/ε − ϕ̃t = O(ε)

which by reverse Poincaré type inequality implies

∇ϕεt/ε −∇ϕ̃t = O(
√
ε).

This can be extended to O(ε).

In Deb et al. (2023), we show that

1

ε
(ϕεt/ε − ϕεt/ε−1)(x)− f (x) → −g(∇ϕ̃t(x)) + log Det(∇2ϕ̃t(x))

in a weak sense. Recall that

LHS = log ρεt/ε, and RHS = log ρt .

Then Deb et al. (2023) shows

W2(ρ
ε
t/ε, ρt) → 0.

Based on current bounds this can be improved to KL instead of
Wasserstein.

28 / 31

Comparison with existing works

Quantitatively, Deb et al. (2023) shows that

W2(ρ
ε
t/ε, ρt) = O(

√
ε).

This can be extended to

W2(ρ
ε
t/ε, ρt) = O(ε).

The metric can be improved to KL, the linearized optimal transport
distance, etc.

There is trade-off in that the improved bounds require two extra
orders of regularity on the PMA.

In Pooladian and Weed (2024), authors analyze Sinkhorn with space
discretization and provide rates of convergence but with k ∼ (1/ε)7

as opposed to k ∼ (1/ε).

29 / 31

Comparison with existing works

Quantitatively, Deb et al. (2023) shows that

W2(ρ
ε
t/ε, ρt) = O(

√
ε).

This can be extended to

W2(ρ
ε
t/ε, ρt) = O(ε).

The metric can be improved to KL, the linearized optimal transport
distance, etc.

There is trade-off in that the improved bounds require two extra
orders of regularity on the PMA.

In Pooladian and Weed (2024), authors analyze Sinkhorn with space
discretization and provide rates of convergence but with k ∼ (1/ε)7

as opposed to k ∼ (1/ε).

29 / 31

Comparison with existing works

Quantitatively, Deb et al. (2023) shows that

W2(ρ
ε
t/ε, ρt) = O(

√
ε).

This can be extended to

W2(ρ
ε
t/ε, ρt) = O(ε).

The metric can be improved to KL, the linearized optimal transport
distance, etc.

There is trade-off in that the improved bounds require two extra
orders of regularity on the PMA.

In Pooladian and Weed (2024), authors analyze Sinkhorn with space
discretization and provide rates of convergence but with k ∼ (1/ε)7

as opposed to k ∼ (1/ε).

29 / 31

Proof technique

Main technical lemma

Under previous assumptions,

ϕεt/ε = ϕ̃t(x) + εrt(x) + O(ε2),

where rt depends on f , g , and ϕ̃t (explicitly provided).

Compare to Berman (2020), ϕεt/ε = ϕ̃t + O(ε).

We borrow and extend the coupling argument from Berman (2020).

A multivariate second order Laplace approximation.

Typically to extract the coefficients

ϕεt/ε = ϕ̃t + ε(. . .) + ε2(. . .) + . . .

we need one extra order Laplace approximation which will introduce
one extra PDE.

Solving the PDE for the coefficient of ε in terms of the solution of
PMA ϕ̃t . Recall ϕ̃t is the solution of the PMA.

30 / 31

Proof technique

Main technical lemma

Under previous assumptions,

ϕεt/ε = ϕ̃t(x) + εrt(x) + O(ε2),

where rt depends on f , g , and ϕ̃t (explicitly provided).

Compare to Berman (2020), ϕεt/ε = ϕ̃t + O(ε).

We borrow and extend the coupling argument from Berman (2020).

A multivariate second order Laplace approximation.

Typically to extract the coefficients

ϕεt/ε = ϕ̃t + ε(. . .) + ε2(. . .) + . . .

we need one extra order Laplace approximation which will introduce
one extra PDE.

Solving the PDE for the coefficient of ε in terms of the solution of
PMA ϕ̃t . Recall ϕ̃t is the solution of the PMA.

30 / 31

Proof technique

Main technical lemma

Under previous assumptions,

ϕεt/ε = ϕ̃t(x) + εrt(x) + O(ε2),

where rt depends on f , g , and ϕ̃t (explicitly provided).

Compare to Berman (2020), ϕεt/ε = ϕ̃t + O(ε).

We borrow and extend the coupling argument from Berman (2020).

A multivariate second order Laplace approximation.

Typically to extract the coefficients

ϕεt/ε = ϕ̃t + ε(. . .) + ε2(. . .) + . . .

we need one extra order Laplace approximation which will introduce
one extra PDE.

Solving the PDE for the coefficient of ε in terms of the solution of
PMA ϕ̃t . Recall ϕ̃t is the solution of the PMA.

30 / 31

Proof technique

Main technical lemma

Under previous assumptions,

ϕεt/ε = ϕ̃t(x) + εrt(x) + O(ε2),

where rt depends on f , g , and ϕ̃t (explicitly provided).

Compare to Berman (2020), ϕεt/ε = ϕ̃t + O(ε).

We borrow and extend the coupling argument from Berman (2020).

A multivariate second order Laplace approximation.

Typically to extract the coefficients

ϕεt/ε = ϕ̃t + ε(. . .) + ε2(. . .) + . . .

we need one extra order Laplace approximation which will introduce
one extra PDE.

Solving the PDE for the coefficient of ε in terms of the solution of
PMA ϕ̃t . Recall ϕ̃t is the solution of the PMA.

30 / 31

Proof technique

Main technical lemma

Under previous assumptions,

ϕεt/ε = ϕ̃t(x) + εrt(x) + O(ε2),

where rt depends on f , g , and ϕ̃t (explicitly provided).

Compare to Berman (2020), ϕεt/ε = ϕ̃t + O(ε).

We borrow and extend the coupling argument from Berman (2020).

A multivariate second order Laplace approximation.

Typically to extract the coefficients

ϕεt/ε = ϕ̃t + ε(. . .) + ε2(. . .) + . . .

we need one extra order Laplace approximation which will introduce
one extra PDE.

Solving the PDE for the coefficient of ε in terms of the solution of
PMA ϕ̃t . Recall ϕ̃t is the solution of the PMA.

30 / 31

Proof technique

Main technical lemma

Under previous assumptions,

ϕεt/ε = ϕ̃t(x) + εrt(x) + O(ε2),

where rt depends on f , g , and ϕ̃t (explicitly provided).

Compare to Berman (2020), ϕεt/ε = ϕ̃t + O(ε).

We borrow and extend the coupling argument from Berman (2020).

A multivariate second order Laplace approximation.

Typically to extract the coefficients

ϕεt/ε = ϕ̃t + ε(. . .) + ε2(. . .) + . . .

we need one extra order Laplace approximation which will introduce
one extra PDE.

Solving the PDE for the coefficient of ε in terms of the solution of
PMA ϕ̃t . Recall ϕ̃t is the solution of the PMA.

30 / 31

Conclusion

Discretizing parabolic Monge-Ampère could lead to a new
perspective on generative modeling.

There is a general family of parabolic PDEs. Can we design
Sinkhorn-like algorithms for them?

How to choose the source distribution in practice?

What about random space discretization? How to choose ε > 0
based on data?

Tracking these flows via particle systems ...

Thank you. Questions?

31 / 31

Conclusion

Discretizing parabolic Monge-Ampère could lead to a new
perspective on generative modeling.

There is a general family of parabolic PDEs. Can we design
Sinkhorn-like algorithms for them?

How to choose the source distribution in practice?

What about random space discretization? How to choose ε > 0
based on data?

Tracking these flows via particle systems ...

Thank you. Questions?

31 / 31

Entropic regularization

Figure: Image by M. Cuturi

Föllmer ’88, Cuturi ’13, Gigli ’19 ... suggested penalizing MK OT
with entropy.

EOTϵ(e
−f , e−g) = inf

γ∈Π

[∫
∥y − x∥2 dγ + ϵEnt(γ)

]
.

31 / 31

Structure of the solution

The optimal coupling (Rüschendorf & Thomsen ’93) γϵ must be of
the form

γϵ(x , y) = exp

(
− 1

2ϵ
∥y − x∥2 − 1

ϵ
uϵ(x)− 1

ϵ
v ϵ(y)− f (x)− g(y)

)
.

uϵ, v ϵ - Schrödinger potentials. Unique up to constant.

Typically not explicit. Determined by marginal constraints∫
γϵ(x , y)dy = e−f (x),

∫
γϵ(x , y)dx = e−g(y).

31 / 31

Sinkhorn/IPFP algorithm

Initialize a distribution γϵ0 on Rd × Rd“appropriately”. Iteratively fit
alternating marginals.

At every odd step, say γϵ2k+1, the X marginal is e−f .

At every even step, say γϵ2k the Y marginal is e−g . So, e.g.,

γϵ1(x , y) = e−f (x) γϵ0(x , y)∫
y
γϵ0(x , y) dy

, γϵ2(x , y) = e−g(y) γϵ1(x , y)∫
x
γϵ1(x , y) dx

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

In fact, ρϵk characterizes the corresponding γϵk via a variational
problem.

How fast does ρϵk converge to e−f when ε→ 0 appropriately scaled
with k → ∞? For the case ε > 0, see Ghosal and Nutz, 2022,
Conforti et al., 2023, ...

31 / 31

Sinkhorn/IPFP algorithm

Initialize a distribution γϵ0 on Rd × Rd“appropriately”. Iteratively fit
alternating marginals.

At every odd step, say γϵ2k+1, the X marginal is e−f .

At every even step, say γϵ2k the Y marginal is e−g . So, e.g.,

γϵ1(x , y) = e−f (x) γϵ0(x , y)∫
y
γϵ0(x , y) dy

, γϵ2(x , y) = e−g(y) γϵ1(x , y)∫
x
γϵ1(x , y) dx

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

In fact, ρϵk characterizes the corresponding γϵk via a variational
problem.

How fast does ρϵk converge to e−f when ε→ 0 appropriately scaled
with k → ∞? For the case ε > 0, see Ghosal and Nutz, 2022,
Conforti et al., 2023, ...

31 / 31

Sinkhorn/IPFP algorithm

Initialize a distribution γϵ0 on Rd × Rd“appropriately”. Iteratively fit
alternating marginals.

At every odd step, say γϵ2k+1, the X marginal is e−f .

At every even step, say γϵ2k the Y marginal is e−g . So, e.g.,

γϵ1(x , y) = e−f (x) γϵ0(x , y)∫
y
γϵ0(x , y) dy

,

γϵ2(x , y) = e−g(y) γϵ1(x , y)∫
x
γϵ1(x , y) dx

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

In fact, ρϵk characterizes the corresponding γϵk via a variational
problem.

How fast does ρϵk converge to e−f when ε→ 0 appropriately scaled
with k → ∞? For the case ε > 0, see Ghosal and Nutz, 2022,
Conforti et al., 2023, ...

31 / 31

Sinkhorn/IPFP algorithm

Initialize a distribution γϵ0 on Rd × Rd“appropriately”. Iteratively fit
alternating marginals.

At every odd step, say γϵ2k+1, the X marginal is e−f .

At every even step, say γϵ2k the Y marginal is e−g . So, e.g.,

γϵ1(x , y) = e−f (x) γϵ0(x , y)∫
y
γϵ0(x , y) dy

, γϵ2(x , y) = e−g(y) γϵ1(x , y)∫
x
γϵ1(x , y) dx

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

In fact, ρϵk characterizes the corresponding γϵk via a variational
problem.

How fast does ρϵk converge to e−f when ε→ 0 appropriately scaled
with k → ∞? For the case ε > 0, see Ghosal and Nutz, 2022,
Conforti et al., 2023, ...

31 / 31

Sinkhorn/IPFP algorithm

Initialize a distribution γϵ0 on Rd × Rd“appropriately”. Iteratively fit
alternating marginals.

At every odd step, say γϵ2k+1, the X marginal is e−f .

At every even step, say γϵ2k the Y marginal is e−g . So, e.g.,

γϵ1(x , y) = e−f (x) γϵ0(x , y)∫
y
γϵ0(x , y) dy

, γϵ2(x , y) = e−g(y) γϵ1(x , y)∫
x
γϵ1(x , y) dx

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

In fact, ρϵk characterizes the corresponding γϵk via a variational
problem.

How fast does ρϵk converge to e−f when ε→ 0 appropriately scaled
with k → ∞? For the case ε > 0, see Ghosal and Nutz, 2022,
Conforti et al., 2023, ...

31 / 31

Sinkhorn/IPFP algorithm

Initialize a distribution γϵ0 on Rd × Rd“appropriately”. Iteratively fit
alternating marginals.

At every odd step, say γϵ2k+1, the X marginal is e−f .

At every even step, say γϵ2k the Y marginal is e−g . So, e.g.,

γϵ1(x , y) = e−f (x) γϵ0(x , y)∫
y
γϵ0(x , y) dy

, γϵ2(x , y) = e−g(y) γϵ1(x , y)∫
x
γϵ1(x , y) dx

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

In fact, ρϵk characterizes the corresponding γϵk via a variational
problem.

How fast does ρϵk converge to e−f when ε→ 0 appropriately scaled
with k → ∞? For the case ε > 0, see Ghosal and Nutz, 2022,
Conforti et al., 2023, ...

31 / 31

The “Scaling” limit

By Berman ’20 and Léger ’20, it follows:

(H∗
ϵ)

′(ρϵk+1)− (H∗
ϵ)

′(ρϵk) = −KL′(ρk |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation.

No missing ϵ on RHS

This reminds us of usual gradient descent:

Z ϵ
k+1 − Z ϵ

k = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have Z ϵ

t/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

31 / 31

The “Scaling” limit

By Berman ’20 and Léger ’20, it follows:

(H∗
ϵ)

′(ρϵk+1)− (H∗
ϵ)

′(ρϵk) = −KL′(ρk |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation. No missing ϵ on RHS

This reminds us of usual gradient descent:

Z ϵ
k+1 − Z ϵ

k = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have Z ϵ

t/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

31 / 31

The “Scaling” limit

By Berman ’20 and Léger ’20, it follows:

(H∗
ϵ)

′(ρϵk+1)− (H∗
ϵ)

′(ρϵk) = −KL′(ρk |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation. No missing ϵ on RHS

This reminds us of usual gradient descent:

Z ϵ
k+1 − Z ϵ

k = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have Z ϵ

t/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

31 / 31

The “Scaling” limit

By Berman ’20 and Léger ’20, it follows:

(H∗
ϵ)

′(ρϵk+1)− (H∗
ϵ)

′(ρϵk) = −KL′(ρk |e−f).

Here Hϵ(·) is itself characterized by a variational problem, H∗
ϵ is the

dual, and ′ is used for first variation. No missing ϵ on RHS

This reminds us of usual gradient descent:

Z ϵ
k+1 − Z ϵ

k = −ϵ∇F (Z ϵ
k).

(Cauchy problem) By Santambrogio ’16, with k = t/ϵ and ϵ→ 0,
we have Z ϵ

t/ϵ → x̃t where

d

dt
x̃t = −∇F (x̃t).

x̃t → x̃∞ (optimizer of F) usually exponentially fast if F is λ-convex.
Helps to speed up convergence, understand regularization, etc.

31 / 31

Our approach

ε → 0

ρkε

Embed the sequence in time steps ϵ.

Find the limiting absolutely continuous curve (ρt , t ≥ 0),

ρt = lim
ϵ→0

ρϵt/ϵ.

Describe this curve as a “mirror gradient flow”.

Use gradient flow techniques to determine exponential rates of
convergence under assumptions.

Come up with a Mckean-Vlasov diffusion whose marginals follow the
same mirror gradient flow.

31 / 31

Euclidean mirror gradient flows

31 / 31

Diffeomorphisms by convex gradients

Figure: Image of a diffeomorphism by G. Peyré

u : Rd → R differentiable strictly convex.

x ↔ xu = ∇u(x) creates mirror coordinates by duality.

Two notions of gradients. F : Rd → R.

∇xF (x), ∇xuF (x) :=
(
∇2u(x)

)−1 ∇xF (x).

Usual case u(x) = 1
2 ∥x∥

2.

31 / 31

Mirror gradient flow ODEs

Mirror gradient flows have two equivalent ODEs. Initialize Z0.

Flow of the mirror coordinate.

∇u(Zk+1)−∇u(Zk) = −ϵ∇F (Zk) ẋu
t =

d

dt
∇u(Zt) = −∇xF (Zt)

Flow of the primal/canonical coordinate.

Zk+1 − Zk = −ϵ∇xuF (Zk) ẋt = −∇xuF (Zt) = −(∇2u(Zt))
−1∇xF (Zt)

Gradient flow in a Hessian Riemannian manifold with a metric tensor
given by the Hessian (

∇2u(x)
)−1

= ∇2u∗(xu).

What to expect? Interpret Sinkhorn as a mirror descent on the
space of probability measures. What are F and u?

31 / 31

Mirror gradient flow ODEs

Mirror gradient flows have two equivalent ODEs. Initialize Z0.

Flow of the mirror coordinate.

∇u(Zk+1)−∇u(Zk) = −ϵ∇F (Zk) ẋu
t =

d

dt
∇u(Zt) = −∇xF (Zt)

Flow of the primal/canonical coordinate.

Zk+1 − Zk = −ϵ∇xuF (Zk) ẋt = −∇xuF (Zt) = −(∇2u(Zt))
−1∇xF (Zt)

Gradient flow in a Hessian Riemannian manifold with a metric tensor
given by the Hessian (

∇2u(x)
)−1

= ∇2u∗(xu).

What to expect? Interpret Sinkhorn as a mirror descent on the
space of probability measures. What are F and u?

31 / 31

Mirror gradient flow ODEs

Mirror gradient flows have two equivalent ODEs. Initialize Z0.

Flow of the mirror coordinate.

∇u(Zk+1)−∇u(Zk) = −ϵ∇F (Zk) ẋu
t =

d

dt
∇u(Zt) = −∇xF (Zt)

Flow of the primal/canonical coordinate.

Zk+1 − Zk = −ϵ∇xuF (Zk) ẋt = −∇xuF (Zt) = −(∇2u(Zt))
−1∇xF (Zt)

Gradient flow in a Hessian Riemannian manifold with a metric tensor
given by the Hessian (

∇2u(x)
)−1

= ∇2u∗(xu).

What to expect? Interpret Sinkhorn as a mirror descent on the
space of probability measures. What are F and u?

31 / 31

Mirror gradient flow ODEs

Mirror gradient flows have two equivalent ODEs. Initialize Z0.

Flow of the mirror coordinate.

∇u(Zk+1)−∇u(Zk) = −ϵ∇F (Zk) ẋu
t =

d

dt
∇u(Zt) = −∇xF (Zt)

Flow of the primal/canonical coordinate.

Zk+1 − Zk = −ϵ∇xuF (Zk) ẋt = −∇xuF (Zt) = −(∇2u(Zt))
−1∇xF (Zt)

Gradient flow in a Hessian Riemannian manifold with a metric tensor
given by the Hessian (

∇2u(x)
)−1

= ∇2u∗(xu).

What to expect? Interpret Sinkhorn as a mirror descent on the
space of probability measures. What are F and u?

31 / 31

Examples

d = 1, F (x) = x2/2, Z0 = 1.

u(x) = x2/2. Usual gradient flow converges exponentially.

ẋt = −Zt , Zt = e−t .

u(x) = x4. Mirror flow converges in finite time.

ẋt = − 1

12Zt
, Zt =

√
(1− t/6)+.

u(x) = 1/x . Mirror flow converges polynomially.

ẋt = −1

2
Z 4
t , Zt = (1 + 3t/2)−1/3.

For analogy, we say a mirror gradient flow is characterized by an
objective function F and a mirror map u.

31 / 31

Examples

d = 1, F (x) = x2/2, Z0 = 1.

u(x) = x2/2. Usual gradient flow converges exponentially.

ẋt = −Zt , Zt = e−t .

u(x) = x4. Mirror flow converges in finite time.

ẋt = − 1

12Zt
, Zt =

√
(1− t/6)+.

u(x) = 1/x . Mirror flow converges polynomially.

ẋt = −1

2
Z 4
t , Zt = (1 + 3t/2)−1/3.

For analogy, we say a mirror gradient flow is characterized by an
objective function F and a mirror map u.

31 / 31

Examples

d = 1, F (x) = x2/2, Z0 = 1.

u(x) = x2/2. Usual gradient flow converges exponentially.

ẋt = −Zt , Zt = e−t .

u(x) = x4. Mirror flow converges in finite time.

ẋt = − 1

12Zt
, Zt =

√
(1− t/6)+.

u(x) = 1/x . Mirror flow converges polynomially.

ẋt = −1

2
Z 4
t , Zt = (1 + 3t/2)−1/3.

For analogy, we say a mirror gradient flow is characterized by an
objective function F and a mirror map u.

31 / 31

Examples

d = 1, F (x) = x2/2, Z0 = 1.

u(x) = x2/2. Usual gradient flow converges exponentially.

ẋt = −Zt , Zt = e−t .

u(x) = x4. Mirror flow converges in finite time.

ẋt = − 1

12Zt
, Zt =

√
(1− t/6)+.

u(x) = 1/x . Mirror flow converges polynomially.

ẋt = −1

2
Z 4
t , Zt = (1 + 3t/2)−1/3.

For analogy, we say a mirror gradient flow is characterized by an
objective function F and a mirror map u.

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Recall that we wanted to study the limit of ρϵk (X marginals from
Sinkhorn) for k = t/ϵ, i.e.,

lim
ϵ→0

ρϵt/ϵ =??

Theorem (DKPS ’23)

Under regularity assumptions, limϵ→0 ρ
ϵ
t/ϵ = ρt where ρt is the

Wasserstein mirror flow with

Objective function: F (ρ) = KL(ρ|e−f)

Mirror map: U(ρ) = 1
2W

2
2 (ρ, e

−g)

How do we describe Wasserstein mirror flows?
Parabolic PDE+continuity equation

Do we still (potentially??) need to make sense of the Hessian of
U(·)?
No!

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Recall that we wanted to study the limit of ρϵk (X marginals from
Sinkhorn) for k = t/ϵ, i.e.,

lim
ϵ→0

ρϵt/ϵ =??

Theorem (DKPS ’23)

Under regularity assumptions, limϵ→0 ρ
ϵ
t/ϵ = ρt where ρt is the

Wasserstein mirror flow with

Objective function: F (ρ) = KL(ρ|e−f)

Mirror map: U(ρ) = 1
2W

2
2 (ρ, e

−g)

How do we describe Wasserstein mirror flows?
Parabolic PDE+continuity equation

Do we still (potentially??) need to make sense of the Hessian of
U(·)?
No!

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Recall that we wanted to study the limit of ρϵk (X marginals from
Sinkhorn) for k = t/ϵ, i.e.,

lim
ϵ→0

ρϵt/ϵ =??

Theorem (DKPS ’23)

Under regularity assumptions, limϵ→0 ρ
ϵ
t/ϵ = ρt where ρt is the

Wasserstein mirror flow with

Objective function: F (ρ) = KL(ρ|e−f)

Mirror map: U(ρ) = 1
2W

2
2 (ρ, e

−g)

How do we describe Wasserstein mirror flows?

Parabolic PDE+continuity equation

Do we still (potentially??) need to make sense of the Hessian of
U(·)?
No!

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Recall that we wanted to study the limit of ρϵk (X marginals from
Sinkhorn) for k = t/ϵ, i.e.,

lim
ϵ→0

ρϵt/ϵ =??

Theorem (DKPS ’23)

Under regularity assumptions, limϵ→0 ρ
ϵ
t/ϵ = ρt where ρt is the

Wasserstein mirror flow with

Objective function: F (ρ) = KL(ρ|e−f)

Mirror map: U(ρ) = 1
2W

2
2 (ρ, e

−g)

How do we describe Wasserstein mirror flows?
Parabolic PDE+continuity equation

Do we still (potentially??) need to make sense of the Hessian of
U(·)?
No!

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Recall that we wanted to study the limit of ρϵk (X marginals from
Sinkhorn) for k = t/ϵ, i.e.,

lim
ϵ→0

ρϵt/ϵ =??

Theorem (DKPS ’23)

Under regularity assumptions, limϵ→0 ρ
ϵ
t/ϵ = ρt where ρt is the

Wasserstein mirror flow with

Objective function: F (ρ) = KL(ρ|e−f)

Mirror map: U(ρ) = 1
2W

2
2 (ρ, e

−g)

How do we describe Wasserstein mirror flows?
Parabolic PDE+continuity equation

Do we still (potentially??) need to make sense of the Hessian of
U(·)?

No!

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Recall that we wanted to study the limit of ρϵk (X marginals from
Sinkhorn) for k = t/ϵ, i.e.,

lim
ϵ→0

ρϵt/ϵ =??

Theorem (DKPS ’23)

Under regularity assumptions, limϵ→0 ρ
ϵ
t/ϵ = ρt where ρt is the

Wasserstein mirror flow with

Objective function: F (ρ) = KL(ρ|e−f)

Mirror map: U(ρ) = 1
2W

2
2 (ρ, e

−g)

How do we describe Wasserstein mirror flows?
Parabolic PDE+continuity equation

Do we still (potentially??) need to make sense of the Hessian of
U(·)?
No!

31 / 31

Wasserstein mirror gradient flows

31 / 31

Wasserstein gradient flow recap

(Otto ’98) Wasserstein space W2(Rd) is a formal Riemannian
manifold.

Tangent space at ρ

{∇ϕ, ϕ ∈ C∞
c }

L2(ρ)
.

F : W2 → R. Wasserstein gradient is a Riemannian gradient.

∇WF (ρ) = ∇
(
δF

δρ

)
.

Here δF
δρ denotes the first variation, i.e., d

dtF (ρ+ tν)

∣∣∣∣
t=0

=
∫

δF
δρ dν.

Wasserstein gradient flow solves continuity equation.

ρ̇t +∇ · (vtρt) = 0, vt = −∇WF (ρt).

vt often called velocity. Belongs in the tangent space.

A gradient descent analogy: d
dtZt = −∇F (Zt). Effectively usual

gradient replaced with ∇W to get vt .

31 / 31

Wasserstein gradient flow recap

(Otto ’98) Wasserstein space W2(Rd) is a formal Riemannian
manifold.

Tangent space at ρ

{∇ϕ, ϕ ∈ C∞
c }

L2(ρ)
.

F : W2 → R. Wasserstein gradient is a Riemannian gradient.

∇WF (ρ) = ∇
(
δF

δρ

)
.

Here δF
δρ denotes the first variation, i.e., d

dtF (ρ+ tν)

∣∣∣∣
t=0

=
∫

δF
δρ dν.

Wasserstein gradient flow solves continuity equation.

ρ̇t +∇ · (vtρt) = 0, vt = −∇WF (ρt).

vt often called velocity. Belongs in the tangent space.

A gradient descent analogy: d
dtZt = −∇F (Zt). Effectively usual

gradient replaced with ∇W to get vt .

31 / 31

Wasserstein gradient flow recap

(Otto ’98) Wasserstein space W2(Rd) is a formal Riemannian
manifold.

Tangent space at ρ

{∇ϕ, ϕ ∈ C∞
c }

L2(ρ)
.

F : W2 → R. Wasserstein gradient is a Riemannian gradient.

∇WF (ρ) = ∇
(
δF

δρ

)
.

Here δF
δρ denotes the first variation, i.e., d

dtF (ρ+ tν)

∣∣∣∣
t=0

=
∫

δF
δρ dν.

Wasserstein gradient flow solves continuity equation.

ρ̇t +∇ · (vtρt) = 0, vt = −∇WF (ρt).

vt often called velocity. Belongs in the tangent space.

A gradient descent analogy: d
dtZt = −∇F (Zt). Effectively usual

gradient replaced with ∇W to get vt .
31 / 31

Mirror, mirror on the ...

Special choice of mirror function/map on W2. Fix density e−g .

U(ρ) :=
1

2
W2

2

(
ρ, e−g

)
.

(Generalized) Geodesically convex. Generates mirror coordinate:

ρ⇐⇒ x −∇uρ(x)︸ ︷︷ ︸
Kantorovich potential

= ∇WU(ρ),

where ∇uρ(·) is the Brenier map transporting ρ to e−g , i.e., uρ is
convex and (∇uρ)#ρ = e−g or, if X ∼ ρ, then ∇uρ(X) ∼ e−g .

Recall Euclidean mirror descent: Given a convex mirror map u, the
mirror coordinates are given by ∇u(x).

Natural analog would be to describe two equivalent fows — one for
probability measures (ρt)t≥0 (primal coordinate) and another for
Brenier porentials (∇uρt)t≥0 ≡ (∇ut)t≥0 (mirror coordinate)

31 / 31

Mirror, mirror on the ...

Special choice of mirror function/map on W2. Fix density e−g .

U(ρ) :=
1

2
W2

2

(
ρ, e−g

)
.

(Generalized) Geodesically convex. Generates mirror coordinate:

ρ⇐⇒ x −∇uρ(x)︸ ︷︷ ︸
Kantorovich potential

= ∇WU(ρ),

where ∇uρ(·) is the Brenier map transporting ρ to e−g , i.e., uρ is
convex and (∇uρ)#ρ = e−g or, if X ∼ ρ, then ∇uρ(X) ∼ e−g .

Recall Euclidean mirror descent: Given a convex mirror map u, the
mirror coordinates are given by ∇u(x).

Natural analog would be to describe two equivalent fows — one for
probability measures (ρt)t≥0 (primal coordinate) and another for
Brenier porentials (∇uρt)t≥0 ≡ (∇ut)t≥0 (mirror coordinate)

31 / 31

Mirror, mirror on the ...

Special choice of mirror function/map on W2. Fix density e−g .

U(ρ) :=
1

2
W2

2

(
ρ, e−g

)
.

(Generalized) Geodesically convex. Generates mirror coordinate:

ρ⇐⇒ x −∇uρ(x)︸ ︷︷ ︸
Kantorovich potential

= ∇WU(ρ),

where ∇uρ(·) is the Brenier map transporting ρ to e−g , i.e., uρ is
convex and (∇uρ)#ρ = e−g or, if X ∼ ρ, then ∇uρ(X) ∼ e−g .

Recall Euclidean mirror descent: Given a convex mirror map u, the
mirror coordinates are given by ∇u(x).

Natural analog would be to describe two equivalent fows — one for
probability measures (ρt)t≥0 (primal coordinate) and another for
Brenier porentials (∇uρt)t≥0 ≡ (∇ut)t≥0 (mirror coordinate)

31 / 31

Mirror flow PDE and continuity equations

Mirror gradient flow PDE for the potential (mirror coordinate).
Initialize at u0.

∂

∂t
∇WU(ρt) = −∇WF (ρt)

=⇒ ∇u̇t = ∇WF (ρt), ∇ut#ρt = e−g .

Euclidean case: ∂
∂t∇u(Zt) = −∇F (Zt).

Mirror gradient flow continuity equation (primal coordinates).
Initialize at ρ0.

ρ̇t +∇ · (vtρt) = 0, vt = −
(
∇2ut

)−1∇WF (ρt) = −∇xut

δF

δρ
(ρt).

where ∇ut is the Brenier map from ρt to e−g , ∇ut#ρt = e−g .
Euclidean case: ẋt = −(∇2u(Zt))

−1∇xF (Zt)

31 / 31

Mirror flow PDE and continuity equations

Mirror gradient flow PDE for the potential (mirror coordinate).
Initialize at u0.

∂

∂t
∇WU(ρt) = −∇WF (ρt)

=⇒ ∇u̇t = ∇WF (ρt), ∇ut#ρt = e−g .

Euclidean case: ∂
∂t∇u(Zt) = −∇F (Zt).

Mirror gradient flow continuity equation (primal coordinates).
Initialize at ρ0.

ρ̇t +∇ · (vtρt) = 0, vt = −
(
∇2ut

)−1∇WF (ρt) = −∇xut

δF

δρ
(ρt).

where ∇ut is the Brenier map from ρt to e−g , ∇ut#ρt = e−g .

Euclidean case: ẋt = −(∇2u(Zt))
−1∇xF (Zt)

31 / 31

Mirror flow PDE and continuity equations

Mirror gradient flow PDE for the potential (mirror coordinate).
Initialize at u0.

∂

∂t
∇WU(ρt) = −∇WF (ρt)

=⇒ ∇u̇t = ∇WF (ρt), ∇ut#ρt = e−g .

Euclidean case: ∂
∂t∇u(Zt) = −∇F (Zt).

Mirror gradient flow continuity equation (primal coordinates).
Initialize at ρ0.

ρ̇t +∇ · (vtρt) = 0, vt = −
(
∇2ut

)−1∇WF (ρt) = −∇xut

δF

δρ
(ρt).

where ∇ut is the Brenier map from ρt to e−g , ∇ut#ρt = e−g .
Euclidean case: ẋt = −(∇2u(Zt))

−1∇xF (Zt)

31 / 31

Example 1

Entropy. F (ρ) =
∫
ρ(x) log ρ(x)dx . Take d = 1.

Take ρ0 = e−g = N(0, 1).

PDE for the Brenier potential

∇u̇t(x) = log ρt(x) + 1.

Solution ρt = N(0, (1 + t)2).

Compare with the heat flow = Wasserstein grad flow.
µt = N(0, 1 + t).

Faster convergence for mirror flow.

31 / 31

Example 1

Entropy. F (ρ) =
∫
ρ(x) log ρ(x)dx . Take d = 1.

Take ρ0 = e−g = N(0, 1).

PDE for the Brenier potential

∇u̇t(x) = log ρt(x) + 1.

Solution ρt = N(0, (1 + t)2).

Compare with the heat flow = Wasserstein grad flow.
µt = N(0, 1 + t).

Faster convergence for mirror flow.

31 / 31

Example 2 (Sinkhorn flow)

The mirror flow of F (ρ) = KL(ρ|e−f) can be faster than usual
Fokker-Planck.

Take ρ0 = e−g = N(0, η2), for η > 0.

Take e−f = N(0, 1).

Both Fokker-Planck and Wassertein mirror flow admit Gaussian
solutions of the form

N(0, σ2
F ,t), N(0, σ2

M,t).

If η < 1, then

lim
t→∞

|1− σ2
F ,t |

|1− σ2
M,t |

= ∞,

exponentially.

31 / 31

Example 3 (Sinkhorn flow)

The mirror flow of F (ρ) = KL(ρ|e−f) can be faster than usual
Fokker-Planck with multivariate Gaussians.

Take ρ0 = N(0, Id) and e−g = N(0,Θ).

Take e−f = N(0,Σ). Assume Σ and Θ commute, both are
invertible.

Both Fokker-Planck and Wassertein mirror flow admit Gaussian
solutions of the form

N(0,ΣF ,t), N(0,ΣM,t).

If ∥Σ−1Θ∥op < 1, then

lim
t→∞

∥Σ− ΣF ,t∥op
∥Σ− ΣM,t∥op

= ∞,

exponentially.

31 / 31

Example 3 (Sinkhorn flow)

The mirror flow of F (ρ) = KL(ρ|e−f) can be faster than usual
Fokker-Planck with multivariate Gaussians.

Take ρ0 = N(0, Id) and e−g = N(0,Θ).

Take e−f = N(0,Σ). Assume Σ and Θ commute, both are
invertible.

Both Fokker-Planck and Wassertein mirror flow admit Gaussian
solutions of the form

N(0,ΣF ,t), N(0,ΣM,t).

If ∥Σ−1Θ∥op < 1, then

lim
t→∞

∥Σ− ΣF ,t∥op
∥Σ− ΣM,t∥op

= ∞,

exponentially.

31 / 31

Interpreting mirror flow velocity

Consider Wasserstein gradient flow of F , i.e.,

∂tρt +∇ · (vtρt) = 0, vt = −∇
(
δF

δρ

)
ρ=ρt

.

If Tt+h is the transport map from ρt to ρt+h, then

Tt+h = Id+ hvt + o(|h|).

Consider Wasserstein mirror flow of F , i.e.,

∂tρt +∇ · (vtρt) = 0, vt = −∇xut

(
δF

δρ

)
.

If Tt is the transport map from e−g to ρt , then

Tt+h = Tt + hvt(Tt) + o(|h|).

31 / 31

Interpreting mirror flow velocity

Consider Wasserstein gradient flow of F , i.e.,

∂tρt +∇ · (vtρt) = 0, vt = −∇
(
δF

δρ

)
ρ=ρt

.

If Tt+h is the transport map from ρt to ρt+h, then

Tt+h = Id+ hvt + o(|h|).

Consider Wasserstein mirror flow of F , i.e.,

∂tρt +∇ · (vtρt) = 0, vt = −∇xut

(
δF

δρ

)
.

If Tt is the transport map from e−g to ρt , then

Tt+h = Tt + hvt(Tt) + o(|h|).

31 / 31

Recall Linearized OT

Given probability measures µ1, µ2, ν, let T1#ν = µ1 and T2#ν = µ2

(T1, T2 are optimal transport maps).

LOT defn.

LOTν(µ1, µ2) = ∥T1 − T2∥L2(ν).

For Wasserstein mirror flows ...

LOT metric derivative

lim
h→0+

1

h
LOTe−g (ρt+h, ρt) = ∥vt∥L2(ρt) .

For usual gradient flow, the above holds with usual Wasserstein distance.

31 / 31

Recall Linearized OT

Given probability measures µ1, µ2, ν, let T1#ν = µ1 and T2#ν = µ2

(T1, T2 are optimal transport maps).

LOT defn.

LOTν(µ1, µ2) = ∥T1 − T2∥L2(ν).

For Wasserstein mirror flows ...

LOT metric derivative

lim
h→0+

1

h
LOTe−g (ρt+h, ρt) = ∥vt∥L2(ρt) .

For usual gradient flow, the above holds with usual Wasserstein distance.

31 / 31

Recall Linearized OT

Given probability measures µ1, µ2, ν, let T1#ν = µ1 and T2#ν = µ2

(T1, T2 are optimal transport maps).

LOT defn.

LOTν(µ1, µ2) = ∥T1 − T2∥L2(ν).

For Wasserstein mirror flows ...

LOT metric derivative

lim
h→0+

1

h
LOTe−g (ρt+h, ρt) = ∥vt∥L2(ρt) .

For usual gradient flow, the above holds with usual Wasserstein distance.

31 / 31

Recap of Sinkhorn

Initialize “appropriately”. Iteratively fit alternating marginals.

At every odd step the X marginal is e−f .

At every even step the Y marginal is e−g .

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

Find the limiting absolutely continuous curve (ρt , t ≥ 0),

ρt = lim
ϵ→0

ρϵt/ϵ.

Describe this curve as a “Wasserstein mirror gradient flow”.

Use gradient flow techniques to determine exponential rates of
convergence under assumptions.

Come up with a Mckean-Vlasov diffusion whose marginals follow the
same mirror gradient flow.

31 / 31

Recap of Sinkhorn

Initialize “appropriately”. Iteratively fit alternating marginals.

At every odd step the X marginal is e−f .

At every even step the Y marginal is e−g .

Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

Find the limiting absolutely continuous curve (ρt , t ≥ 0),

ρt = lim
ϵ→0

ρϵt/ϵ.

Describe this curve as a “Wasserstein mirror gradient flow”.

Use gradient flow techniques to determine exponential rates of
convergence under assumptions.

Come up with a Mckean-Vlasov diffusion whose marginals follow the
same mirror gradient flow.

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Theorem (DKPS ’23) Under regularity assumptions on the parabolic
MA,

u̇t(x) = f (x)− g (∇ut(x)) + log det∇2ut(x).

the limiting curve of the X marginals is a solution of the Sinkhorn
PDE.

ρ̇t +∇ · (vtρt) = 0, vt = −∇xut (f + log ρt) .

Moreover,
W2

2(ρ
ϵ
t/ϵ, ρt) = O(ε).

In particular, it is a mirror gradient flow of F (ρ) = KL(ρ | e−f) with
the mirror given by U(ρ) = 1

2W
2
2(ρ, e

−g).

A symmetric statement holds for the sequence of Y marginals.

The assumptions hold when e−f and e−g are supported on a Torus,
f and g have two uniformly continuous derivatives.

The parabolic PDE occurs in Berman ’20 where the author studies
limit of the Sinkhorn potentials.

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Theorem (DKPS ’23) Under regularity assumptions on the parabolic
MA,

u̇t(x) = f (x)− g (∇ut(x)) + log det∇2ut(x).

the limiting curve of the X marginals is a solution of the Sinkhorn
PDE.

ρ̇t +∇ · (vtρt) = 0, vt = −∇xut (f + log ρt) .

Moreover,
W2

2(ρ
ϵ
t/ϵ, ρt) = O(ε).

In particular, it is a mirror gradient flow of F (ρ) = KL(ρ | e−f) with
the mirror given by U(ρ) = 1

2W
2
2(ρ, e

−g).

A symmetric statement holds for the sequence of Y marginals.

The assumptions hold when e−f and e−g are supported on a Torus,
f and g have two uniformly continuous derivatives.

The parabolic PDE occurs in Berman ’20 where the author studies
limit of the Sinkhorn potentials.

31 / 31

The limit of Sinkhorn is a mirror gradient flow

Theorem (DKPS ’23) Under regularity assumptions on the parabolic
MA,

u̇t(x) = f (x)− g (∇ut(x)) + log det∇2ut(x).

the limiting curve of the X marginals is a solution of the Sinkhorn
PDE.

ρ̇t +∇ · (vtρt) = 0, vt = −∇xut (f + log ρt) .

Moreover,
W2

2(ρ
ϵ
t/ϵ, ρt) = O(ε).

In particular, it is a mirror gradient flow of F (ρ) = KL(ρ | e−f) with
the mirror given by U(ρ) = 1

2W
2
2(ρ, e

−g).

A symmetric statement holds for the sequence of Y marginals.

The assumptions hold when e−f and e−g are supported on a Torus,
f and g have two uniformly continuous derivatives.

The parabolic PDE occurs in Berman ’20 where the author studies
limit of the Sinkhorn potentials.

31 / 31

Exponential rate of convergence

Theorem (DKPS ’23) Suppose e−f satisfies logarithmic Sobolev
inequality. Also suppose that the solution of the parabolic MA satisfies

inf
t
inf
x

(
∇2ut(x)

)−1 ≥ λI ,

then exponential convergence for the Sinkhorn PDE.

There are conditions known where our assumptions are satisfied.
See, e.g., Berman ’20.

The proof is a standard gradient flow argument.

31 / 31

A McKean-Vlasov interpretation

Consider the mirror flow for an objective function F (·) and with mirror
map 1

2W
2
2 (·, e−g).

“Sinkhorn like” PDE is the marginal law of the following diffusion.

dZt =

(
− ∂

∂xut
δF

δρt
(Zt)−

∂g

∂xut
(Z ut

t)

)
dt +

√
2
∂Zt

∂Z ut
t

dBt , (0.1)

where

Zt has density ρt .

(∇ut)#ρt = e−g .

Diffusion matrix at time t is

2
∂x

∂xut
= 2

(
∇2ut(x)

)−1
.

Different from mirror Langevin diffusion (Ahn-Chewi ’21), as ut depends
on law(Zt).

31 / 31

A McKean-Vlasov interpretation

Consider the mirror flow for an objective function F (·) and with mirror
map 1

2W
2
2 (·, e−g).

“Sinkhorn like” PDE is the marginal law of the following diffusion.

dZt =

(
− ∂

∂xut
δF

δρt
(Zt)−

∂g

∂xut
(Z ut

t)

)
dt +

√
2
∂Zt

∂Z ut
t

dBt , (0.1)

where

Zt has density ρt .

(∇ut)#ρt = e−g .

Diffusion matrix at time t is

2
∂x

∂xut
= 2

(
∇2ut(x)

)−1
.

Different from mirror Langevin diffusion (Ahn-Chewi ’21), as ut depends
on law(Zt).

31 / 31

Several open questions

Replace KL by another divergence. Does this have any algorithmic
potential?

How to choose e−g in practice?

Other mirror functions than the squared Wasserstein distance.

One can can formally write the resulting Hessian geometry. But
there are singularities.

⟨v1, v2⟩ρ =

∫
vT
1 (x)

(
∇2uρ(x)

)−1
v2(x)ρ(dx).

Build a JKO like scheme for this Hessian geometry. See
Rankin-Wong ’23 for some related constructions of the
Bregman-Wasserstein divergences.

Do particle systems that follow Euclidean mirror gradient flows
converge to Wasserstein mirror gradient flows?

For more details
https://arxiv.org/pdf/2307.16421.pdf

Thank you. Questions?

31 / 31

Several open questions

Replace KL by another divergence. Does this have any algorithmic
potential?

How to choose e−g in practice?

Other mirror functions than the squared Wasserstein distance.

One can can formally write the resulting Hessian geometry. But
there are singularities.

⟨v1, v2⟩ρ =

∫
vT
1 (x)

(
∇2uρ(x)

)−1
v2(x)ρ(dx).

Build a JKO like scheme for this Hessian geometry. See
Rankin-Wong ’23 for some related constructions of the
Bregman-Wasserstein divergences.

Do particle systems that follow Euclidean mirror gradient flows
converge to Wasserstein mirror gradient flows?

For more details
https://arxiv.org/pdf/2307.16421.pdf

Thank you. Questions?

31 / 31

For interpretation

Euclidean gradient flows: Assuming smoothness,

Zt+h − Zt − hZt = o(|h|)

Wasserstein gradient flows: Recall

ρ̇t +∇ · (vtρt) = 0, vt = −∇WF (ρt).

Assuming smoothness,

W2(ρt+h, (Id + hvt)#ρt) = o(|h|),

Requires vt in the tangent space (satisfied for gradient flows)

31 / 31

For interpretation

Euclidean gradient flows: Assuming smoothness,

Zt+h − Zt − hZt = o(|h|)

Wasserstein gradient flows: Recall

ρ̇t +∇ · (vtρt) = 0, vt = −∇WF (ρt).

Assuming smoothness,

W2(ρt+h, (Id + hvt)#ρt) = o(|h|),

Requires vt in the tangent space (satisfied for gradient flows)

31 / 31

Example 1

Entropy. F (ρ) =
∫
ρ(x) log ρ(x)dx . Take d = 1.

Take ρ0 = e−g = N(0, 1).

PDE for the Brenier potential

∇u̇t(x) = log ρt(x) + 1.

Solution ρt = N(0, (1 + t)2).

Compare with the heat flow = Wasserstein grad flow.
µt = N(0, 1 + t).

Faster convergence for mirror flow.

31 / 31

