Nonparametric Estimation in a Two-component Mixture Model with Covariates

Nabarun Deb
Columbia University, New York

Joint Statistical Meeting 2019
29 July, 2019
Joint work with Sujayam Saha (Google)
Adityanand Guntuboyina (University of California at Berkeley) and Bodhisattva Sen (Columbia University)

Preprint available at https://arxiv.org/abs/1810.07897

Mixture model with two-components

- Data: $Y_{1}, Y_{2}, \ldots, Y_{n} \stackrel{\text { i.i.d. }}{\sim} f, \quad f$ density (pdf) on \mathbb{R}.
- Two-groups model: $\quad f(y)=\pi f_{s}(y)+(1-\pi) f_{b}(y), \quad y \in \mathbb{R}$.
- f_{b} is a known density function.
- Unknowns: Mixing proportion $\pi \in[0,1]$ and $\operatorname{pdf} f_{s}\left(\neq f_{b}\right)$.
- Goals: Estimate π and f_{s} (nonparametrically), under certain structural assumptions.

Mixture model with two-components

- Data: $Y_{1}, Y_{2}, \ldots, Y_{n} \stackrel{\text { i.i.d. }}{\sim} f, \quad f$ density (pdf) on \mathbb{R}.
- Two-groups model: $\quad f(y)=\pi f_{s}(y)+(1-\pi) f_{b}(y), \quad y \in \mathbb{R}$.
- f_{b} is a known density function.
- Unknowns: Mixing proportion $\pi \in[0,1]$ and $\operatorname{pdf} f_{s}\left(\neq f_{b}\right)$.
- Goals: Estimate π and f_{s} (nonparametrically), under certain structural assumptions.

Applications

- In multiple testing problems - the z-scores are normally distributed under H_{0} (i.e., f_{b} is known), while their distribution under H_{1} is unknown (Storey [2002], Genovese and Wasserman [2004b], Langaas et al. [2005], Meinshausen and Rice [2006], Efron [2010] ...) where π denotes the proportion of false null hypotheses
- In contamination problems - application in astronomy

Prostate data [Efron (2010)]

- Genetic expression levels for $n=6033$ genes for $m_{1}=50$ control subjects and $m_{2}=52$ prostate cancer patients
- Goal: To discover a small number of "interesting" genes whose expression levels differ between the cancer and control patients
- Such genes, once identified, might be further investigated for a causal link to prostate cancer development

Prostate data [Efron (2010)]

- Genetic expression levels for $n=6033$ genes for $m_{1}=50$ control subjects and $m_{2}=52$ prostate cancer patients
- Goal: To discover a small number of "interesting" genes whose expression levels differ between the cancer and control patients
- Such genes, once identified, might be further investigated for a causal link to prostate cancer development
- The two-sample t-statistic for testing significance of gene i is

$$
t_{i}=\frac{\bar{x}_{i}(2)-\bar{x}_{i}(1)}{s_{i}} \sim t_{100} \quad\left[\text { under } H_{0 i}: \mu_{i}(1)=\mu_{i}(2)\right],
$$

where s_{i} is an estimate of the standard error of $\bar{x}_{i}(1)-\bar{x}_{i}(2)$.

- Reject $H_{0 i}$ if $\left|t_{i}\right|>c_{\alpha}$ (as $\left.H_{A i}: \mu_{i}(1) \neq \mu_{i}(2)\right)$

Z-score modeling

- $t_{i}=\frac{\bar{x}_{i}(2)-\bar{x}_{i}(1)}{s_{i}} \approx Z_{i}+\frac{\mu_{i}(2)-\mu_{i}(1)}{\sigma_{i}}, \quad Z_{i} \sim N(0,1)$ (approx).
- Let $\Delta_{i}:=\frac{\mu_{i}(2)-\mu_{i}(1)}{\sigma_{i}}-$ effect-size.
- Thus, $t_{i} \sim N\left(\Delta_{i}, 1\right)$ (approx).

Z-score modeling

- $t_{i}=\frac{\bar{x}_{i}(2)-\bar{x}_{i}(1)}{s_{i}} \approx Z_{i}+\frac{\mu_{i}(2)-\mu_{i}(1)}{\sigma_{i}}, \quad Z_{i} \sim N(0,1)$ (approx).
- Let $\Delta_{i}:=\frac{\mu_{i}(2)-\mu_{i}(1)}{\sigma_{i}}-$ effect-size.
- Thus, $t_{i} \sim N\left(\Delta_{i}, 1\right)$ (approx).
- Assume that Δ_{i} 's are i.i.d. $(1-\pi) \delta_{0}+\pi G$ (G unknown DF).
- Then t_{1}, \ldots, t_{n} are i.i.d. (approx) and $t_{i} \approx Z_{i}+\Delta_{i}$:

$$
t_{i} \sim(1-\pi) \phi(\cdot)+\pi \int \phi(\cdot-u) d G(u)=(1-\pi) f_{b}+\pi f_{s}
$$

where $f_{b}:=\phi(\cdot)$ and

$$
f_{s}=\int \phi(\cdot-u) d G(u)
$$

is a Gaussian location mixture. See Scott et al. [2015] for a related example.

- We will come back to this model later in the talk.

Regression in a two-component mixture model

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be i.i.d. (X, Y) where

- Y : comes from a two-component mixture model
- $X\left(\in \mathbb{R}^{d}\right)$: may provide information about membership

Regression in a two-component mixture model

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be i.i.d. (X, Y) where

- Y : comes from a two-component mixture model
- $X\left(\in \mathbb{R}^{d}\right)$: may provide information about membership
- Astronomy example (Walker et al. [2009]): Radial velocity (RV) of stars ($n=1266$) from Carina (dSph), contaminated by Milky Way stars
- Neural synchrony detection (Scott et al. [2015]); genomic studies (Ignatiadis et al. [2016] ...)

Regression in a two-component mixture model

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be i.i.d. (X, Y) where

- Y : comes from a two-component mixture model
- $X\left(\in \mathbb{R}^{d}\right)$: may provide information about membership
- Astronomy example (Walker et al. [2009]): Radial velocity (RV) of stars ($n=1266$) from Carina (dSph), contaminated by Milky Way stars
- Neural synchrony detection (Scott et al. [2015]); genomic studies (Ignatiadis et al. [2016] ...)

Question: How do we model the data (i.e., incorporate the covariates)?

Model (Scott et al. [2015], Walker et al. [2009])

- Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be i.i.d. $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ where

$$
Y \mid X=x \sim \pi(x) f_{s}+(1-\pi(x)) f_{b}
$$

(1) f_{b} - known pdf on \mathbb{R}
(2) f_{s} - unknown pdf on \mathbb{R} belonging to a (non)-parametric class \mathfrak{F}
(0) $\pi: \mathbb{R}^{d} \rightarrow[0,1]$ is an unknown (non)-parametric function; $\pi \in \Pi$

Model (Scott et al. [2015], Walker et al. [2009])

- Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be i.i.d. $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ where

$$
Y \mid X=x \sim \pi(x) f_{s}+(1-\pi(x)) f_{b}
$$

(1) f_{b} - known pdf on \mathbb{R}
(2) f_{s} - unknown pdf on \mathbb{R} belonging to a (non)-parametric class \mathfrak{F}
(0) $\pi: \mathbb{R}^{d} \rightarrow[0,1]$ is an unknown (non)-parametric function; $\pi \in \Pi$

- Suppose H is the unobserved latent variable (to (X, Y)), i.e.,

$$
H= \begin{cases}1, & \text { if } Y \text { comes from } f_{s} \\ 0, & \text { if } Y \text { comes from } f_{b}\end{cases}
$$

- $H|X=x \sim \operatorname{Bernoulli}(\pi(x)) ; \quad Y| H=1 \sim f_{s}$ and $Y \mid H=0 \sim f_{b}$
- Identifiability issues with this model?

Identifiability

- Two-groups model: Suppose $\pi \in \Pi:=\{$ constant functions in $[0,1]\}$ and $f_{s} \in \mathfrak{F}$ (convex family of densities) - Not identifiable (see Patra and Sen [2016], Genovese and Wasserman [2004a]).

Identifiability

- Two-groups model: Suppose $\pi \in \Pi:=\{$ constant functions in $[0,1]\}$ and $f_{s} \in \mathfrak{F}$ (convex family of densities) - Not identifiable (see Patra and Sen [2016], Genovese and Wasserman [2004a]).
- Two-groups model with covariates: Suppose $\pi \in \Pi:=\{$ non-decreasing functions in $[0,1]$ bounded above $(<1)\}$ and $f_{s} \in \mathfrak{F}$ (family of non-increasing densities) - Identifiable.

Identifiability

- Two-groups model: Suppose $\pi \in \Pi:=\{$ constant functions in $[0,1]\}$ and $f_{s} \in \mathfrak{F}$ (convex family of densities) - Not identifiable (see Patra and Sen [2016], Genovese and Wasserman [2004a]).
- Two-groups model with covariates: Suppose $\pi \in \Pi:=\{$ non-decreasing functions in $[0,1]$ bounded above $(<1)\}$ and $f_{s} \in \mathfrak{F}$ (family of non-increasing densities) - Identifiable.
- Discrete or continuous covariates: In general, even for "nice" function classes Π (e.g., logistic function/probbit function), the presence of discrete (say binary) covariates may not restore identifiability.

Identifiability

- Two-groups model: Suppose $\pi \in \Pi:=\{$ constant functions in $[0,1]\}$ and $f_{s} \in \mathfrak{F}$ (convex family of densities) - Not identifiable (see Patra and Sen [2016], Genovese and Wasserman [2004a]).
- Two-groups model with covariates: Suppose $\pi \in \Pi:=\{$ non-decreasing functions in $[0,1]$ bounded above $(<1)\}$ and $f_{s} \in \mathfrak{F}$ (family of non-increasing densities) - Identifiable.
- Discrete or continuous covariates: In general, even for "nice" function classes Π (e.g., logistic function/probbit function), the presence of discrete (say binary) covariates may not restore identifiability.
- A general version of identifiability conditions have been presented in the paper.
- Model: $\quad Y \mid X=x \sim \pi(x) f_{s}+(1-\pi(x)) f_{b}, \quad f_{b}$ known
- Unknowns: $\pi \in \Pi$ and $f_{s} \in \mathfrak{F}$
- Note: $Y \mid H=1 \sim f_{s}$ and $Y \mid H=0 \sim f_{b}$ (H is the latent variable)

Goals

- Estimate $\pi(\cdot)$ and the density $f_{s}(\cdot)$
- Another important quantity to estimate is the posterior probability of the latent variable being 0 ("null")

$$
\mathbb{P}(H=0 \mid Y, X)=\frac{(1-\pi(X)) f_{b}(Y)}{(1-\pi(X)) f_{b}(Y)+\pi(X) f_{s}(Y)}
$$

- In multiple testing this is the local false discovery rate $\operatorname{LFDR}(\cdot, \cdot)$
- Obtain accurate estimates of $\operatorname{LFDR}(\cdot, \cdot)$
- Model: $\quad Y \mid X=x \sim \pi(x) f_{s}+(1-\pi(x)) f_{b}, \quad f_{b}$ known
- $\pi \in \Pi$ and $f_{s} \in \mathfrak{F}$ are unknown

Some natural assumptions on $f_{s}(\cdot) \in \mathfrak{F}$

- Arbitrary location mixture of unit-variance Gaussians, i.e.,

$$
f_{s}(y)=\int \phi(y-u) d G(u) \quad(G \text { unknown DF }) ;
$$

arises in multiple testing problems when modeling the z-scores (where G is the distribution of the nonzero effect sizes)

- Any decreasing density on $[0,1]$ (useful in modeling p-values)
- Model: $\quad Y \mid X=x \sim \pi(x) f_{s}+(1-\pi(x)) f_{b}, \quad f_{b}$ known
- $\pi \in \Pi$ and $f_{s} \in \mathfrak{F}$ are unknown

Some natural assumptions on $f_{s}(\cdot) \in \mathfrak{F}$

- Arbitrary location mixture of unit-variance Gaussians, i.e.,

$$
f_{s}(y)=\int \phi(y-u) d G(u) \quad(G \text { unknown DF }) ;
$$

arises in multiple testing problems when modeling the z-scores
(where G is the distribution of the nonzero effect sizes)

- Any decreasing density on $[0,1]$ (useful in modeling p-values)

Some natural assumptions on $\pi(\cdot) \in \Pi$

- Parametric models, i.e., $\pi(x)=\left(1+e^{-\beta^{\top} x}\right)^{-1}$ (Scott et al. [2015])
- Nonparametric models for $\pi(\cdot)$: monotonicity, regression splines, piecewise constancy (Walker et al. [2009], Scott et al. [2015], Li and Barber [2016])

Estimation: (Nonparametric) Maximum Likelihood

- Suppose $f_{s} \in \mathfrak{F}$,
e.g., $\mathfrak{F}=\left\{\int \phi(\cdot-u) d G(u): G\right.$ is DF $\}$
- Suppose $\pi \in \Pi$,

$$
\text { e.g., } \Pi=\left\{\left(1+e^{-\beta^{\top} x}\right)^{-1}: \beta \in \mathbb{R}^{d}\right\}
$$

- Denote the log-likelihood by

$$
\ell\left(\pi, f_{s}\right):=\sum_{i=1}^{n} \log \left[\left(1-\pi\left(X_{i}\right)\right) f_{b}\left(Y_{i}\right)+\pi\left(X_{i}\right) f_{s}\left(Y_{i}\right)\right], \quad \pi \in \Pi, f_{s} \in \mathfrak{F}
$$

- Maximum likelihood estimator (MLE):

$$
\left(\hat{\pi}, \hat{f}_{s}\right)=\underset{\pi \in \Pi, f_{s} \in \tilde{F}}{\operatorname{argmax}} \ell\left(\pi, f_{s}\right)
$$

- Non-convex problem; use EM algorithm (or alternating maximization)

The EM algorithm

The complete data log-likelihood of $\left\{\left(X_{i}, Y_{i}, H_{i}\right)\right\}_{i=1}^{n}$ is

$$
\sum_{i=1}^{n}\left\{H_{i} \log \left[\pi\left(X_{i}\right) f_{s}\left(Y_{i}\right)\right]+\left(1-H_{i}\right) \log \left[\left(1-\pi\left(X_{i}\right)\right) f_{b}\left(Y_{i}\right)\right]\right\}
$$

E-step

- As H_{i} 's are unobserved we replace H_{i} 's by their cond. expectations:

$$
w_{i}:=\mathbb{E}\left(H_{i} \mid Y_{i}=y, X_{i}=x\right)=\frac{\pi(x) f_{s}(y)}{\pi(x) f_{s}(y)+(1-\pi(x)) f_{b}(y)}
$$

- We plug-in current estimates of f_{s} and π to obtain $\hat{\mathbf{w}}=\left(\hat{w}_{1}, \ldots, \hat{w}_{n}\right)$

The EM algorithm

The complete data log-likelihood of $\left\{\left(X_{i}, Y_{i}, H_{i}\right)\right\}_{i=1}^{n}$ is

$$
\sum_{i=1}^{n}\left\{H_{i} \log \left[\pi\left(X_{i}\right) f_{s}\left(Y_{i}\right)\right]+\left(1-H_{i}\right) \log \left[\left(1-\pi\left(X_{i}\right)\right) f_{b}\left(Y_{i}\right)\right]\right\}
$$

E-step

- As H_{i} 's are unobserved we replace H_{i} 's by their cond. expectations:

$$
w_{i}:=\mathbb{E}\left(H_{i} \mid Y_{i}=y, X_{i}=x\right)=\frac{\pi(x) f_{s}(y)}{\pi(x) f_{s}(y)+(1-\pi(x)) f_{b}(y)}
$$

- We plug-in current estimates of f_{s} and π to obtain $\hat{\mathbf{w}}=\left(\hat{w}_{1}, \ldots, \hat{w}_{n}\right)$

M-step

- Due to the particular form of the expected log-likelihood, this joint maximization breaks into two isolated maximization problems:

$$
\begin{aligned}
\hat{\pi}_{\mathrm{EM}}(\hat{\mathbf{w}}, \Pi) & :=\underset{\pi \in \Pi}{\operatorname{argmax}} \sum\left[\hat{w}_{i} \log \pi\left(X_{i}\right)+\left(1-\hat{w}_{i}\right) \log \left(1-\pi\left(X_{i}\right)\right)\right] \\
\hat{f}_{\mathrm{EM}}(\hat{\mathbf{w}}, \widetilde{F}) & :=\underset{f_{s} \in \widetilde{\mathfrak{F}}}{\operatorname{argmax}} \sum \hat{w}_{i} \log f_{s}\left(Y_{i}\right)
\end{aligned}
$$

- Suppose $\pi(x)=\left(1+e^{-\beta^{\top} x}\right)^{-1} ; \quad f_{s}(y)=\int \phi(y-u) d G(u), G$ is DF
- The logistic likelihood problem can be solved using gradient descent:

$$
\hat{\pi}_{\mathrm{EM}}(\hat{\mathbf{w}}, \Pi)=\underset{\pi \in \Pi}{\operatorname{argmax}} \sum\left[\hat{w}_{i} \log \pi\left(X_{i}\right)+\left(1-\hat{w}_{i}\right) \log \left(1-\pi\left(X_{i}\right)\right)\right]
$$

- Suppose $\pi(x)=\left(1+e^{-\beta^{\top} x}\right)^{-1} ; \quad f_{s}(y)=\int \phi(y-u) d G(u), G$ is DF
- The logistic likelihood problem can be solved using gradient descent:

$$
\hat{\pi}_{\mathrm{EM}}(\hat{\mathbf{w}}, \Pi)=\underset{\pi \in \Pi}{\operatorname{argmax}} \sum\left[\hat{w}_{i} \log \pi\left(X_{i}\right)+\left(1-\hat{w}_{i}\right) \log \left(1-\pi\left(X_{i}\right)\right)\right]
$$

Solving the Gaussian location mixture problem

- Solving for any arbitrary Gaussian location mixture is a Kiefer-Wolfowitz MLE (Kiefer and Wolfowitz [1956]):

$$
\hat{f}_{\mathrm{EM}}(\hat{\mathbf{w}}, \mathfrak{F})=\underset{f_{s}=\int \phi(--u) d G(u), G \text { is DF }}{\operatorname{argmax}} \sum_{i=1}^{n} \hat{w}_{i} \log f_{s}\left(Y_{i}\right)
$$

- An infinite dimensional convex program (Lindsay [1995])
- Resulting \hat{G} is supported on at most n points in ConvexHull $\left(Y_{1}, \ldots, Y_{n}\right)$
- Can be approximated by optimizing G over discrete distributions with support in a grid in ConvexHull $\left(Y_{1}, \ldots, Y_{n}\right)$
- Suppose $\mathfrak{F}=\left\{\int \phi(y-u) d G(u): G\right.$ is DF $\}$
- Suppose $\pi \in \Pi$, where Π is a VC subgraph class of functions with VC dimension $V\left(e . g ., \Pi=\left\{\left(1+e^{-\beta^{\top} x}\right)^{-1}: \beta \in \mathbb{R}^{d}\right\}\right)$
- Truth: $\left(\pi^{0}, f_{s}^{0}\right) \in \Pi \times \mathfrak{F}$
- $\left(\hat{\pi}, \hat{f}_{s}\right)$ is s.t. $\ell\left(\hat{\pi}, \hat{f}_{s}\right) \geq \ell\left(\pi^{0}, f_{s}^{0}\right) \quad$ (e.g., $\left.\left(\hat{\pi}, \hat{f}_{s}\right)=\underset{\pi \in \Pi, f_{s} \in \widetilde{F}}{\operatorname{argmax}} \ell\left(\pi, f_{s}\right)\right)$
- Suppose $\mathfrak{F}=\left\{\int \phi(y-u) d G(u): G\right.$ is $\left.D F\right\}$
- Suppose $\pi \in \Pi$, where Π is a VC subgraph class of functions with VC dimension $V\left(e . g ., \Pi=\left\{\left(1+e^{-\beta^{\top} x}\right)^{-1}: \beta \in \mathbb{R}^{d}\right\}\right)$
- Truth: $\left(\pi^{0}, f_{s}^{0}\right) \in \Pi \times \mathfrak{F}$
- $\left(\hat{\pi}, \hat{f}_{s}\right)$ is s.t. $\ell\left(\hat{\pi}, \hat{f}_{s}\right) \geq \ell\left(\pi^{0}, f_{s}^{0}\right) \quad$ (e.g., $\left.\left(\hat{\pi}, \hat{f}_{s}\right)=\underset{\pi \in \Pi, f_{s} \in \mathfrak{F}}{\operatorname{argmax}} \ell\left(\pi, f_{s}\right)\right)$

Theorem (Deb, Saha, Guntuboyina and S. (2018))

Letting d_{H} denote the Hellinger distance, define
$d^{2}\left(\left(\hat{\pi}, \hat{f}_{s}\right),\left(\pi, f_{s}\right)\right):=\frac{1}{n} \sum_{i=1}^{n} d_{H}^{2}\left(\left(1-\pi\left(X_{i}\right)\right) f_{b}+\pi\left(X_{i}\right) f_{s},\left(1-\hat{\pi}\left(X_{i}\right)\right) f_{b}+\hat{\pi}\left(X_{i}\right) \hat{f}_{s}\right)$.
If Π has VC dimension V and G is supported on $[-M, M]$,

$$
\mathbb{E}\left[d^{2}\left(\left(\hat{\pi}, \hat{f}_{s}\right),\left(\pi^{0}, f_{s}^{0}\right)\right)\right]=\mathcal{O}\left(\frac{M+V}{n}(\log n)^{2}\right)
$$

- Suppose $\mathfrak{F}=\left\{\int \phi(y-u) d G(u): G\right.$ is $\left.\operatorname{DF}\right\}$
- Suppose $\pi \in \Pi$, where Π is a VC subgraph class of functions with VC dimension $V\left(e . g ., \Pi=\left\{\left(1+e^{-\beta^{\top} x}\right)^{-1}: \beta \in \mathbb{R}^{d}\right\}\right)$
- Truth: $\left(\pi^{0}, f_{s}^{0}\right) \in \Pi \times \mathfrak{F}$
- $\left(\hat{\pi}, \hat{f}_{s}\right)$ is s.t. $\ell\left(\hat{\pi}, \hat{f}_{s}\right) \geq \ell\left(\pi^{0}, f_{s}^{0}\right) \quad$ (e.g., $\left.\left(\hat{\pi}, \hat{f}_{s}\right)=\underset{\pi \in \Pi, f_{s} \in \mathfrak{F}}{\operatorname{argmax}} \ell\left(\pi, f_{s}\right)\right)$

Theorem (Deb, Saha, Guntuboyina and S. (2018))

Letting d_{H} denote the Hellinger distance, define
$d^{2}\left(\left(\hat{\pi}, \hat{f}_{s}\right),\left(\pi, f_{s}\right)\right):=\frac{1}{n} \sum_{i=1}^{n} d_{H}^{2}\left(\left(1-\pi\left(X_{i}\right)\right) f_{b}+\pi\left(X_{i}\right) f_{s},\left(1-\hat{\pi}\left(X_{i}\right)\right) f_{b}+\hat{\pi}\left(X_{i}\right) \hat{f}_{s}\right)$.
If Π has VC dimension V and G is supported on $[-M, M]$,

$$
\mathbb{E}\left[d^{2}\left(\left(\hat{\pi}, \hat{f}_{s}\right),\left(\pi^{0}, f_{s}^{0}\right)\right)\right]=\mathcal{O}\left(\frac{M+V}{n}(\log n)^{2}\right)
$$

- Almost parametric $\left(n^{-1}\right)$ rate of convergence
- Implications in estimating (denominator of) the posterior $\operatorname{LFDR}(\cdot, \cdot)$
- The model need not be identifiable for the result to hold

Marginal Method - II

- Recall: $\quad Y \mid X=x \sim(1-\pi(x)) f_{b}+\pi(x) f_{s}, \quad f_{b}$ known
- Regression of Y on $X: \mathbb{E}(Y \mid X=x)=(1-\pi(x)) \mu_{b}+\pi(x) \mu_{s}$

Marginal Method - II

- Recall: $\quad Y \mid X=x \sim(1-\pi(x)) f_{b}+\pi(x) f_{s}, \quad f_{b}$ known
- Regression of Y on $X: \mathbb{E}(Y \mid X=x)=(1-\pi(x)) \mu_{b}+\pi(x) \mu_{s}$
- Whenever $\mathbb{E}_{Y \sim f_{b}}[Y]=: \mu_{b} \neq \mu_{s}:=\mathbb{E}_{Y \sim f_{s}}[Y]$, this poses a (non-linear) regression problem (μ_{b} known, μ_{s} unknown):

$$
\left(\hat{\pi}, \hat{\mu}_{s}\right):=\underset{\pi \in \Pi, \mu_{s} \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-\mu_{b}-\pi\left(X_{i}\right)\left(\mu_{s}-\mu_{b}\right)\right)^{2}
$$

- Once $\hat{\pi}(\cdot)$ is estimated,

$$
\hat{f}_{s}:=\underset{f_{s} \in \mathfrak{F}}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left[\left(1-\hat{\pi}\left(X_{i}\right)\right) f_{b}\left(Y_{i}\right)+\hat{\pi}\left(X_{i}\right) f_{s}\left(Y_{i}\right)\right]
$$

can be solved using the Kiefer-Wolfowitz MLE

Marginal Method - I

- Recall: $\quad Y \mid X=x \sim(1-\pi(x)) f_{b}+\pi(x) f_{s}, \quad f_{b}$ known
- Denote $\bar{\pi}:=\mathbb{E}_{X}[\pi(X)]$, overall proportion of non-nulls (signals)
- Observe that marginally,

$$
Y \sim(1-\bar{\pi}) f_{b}+\bar{\pi} f_{s}
$$

Marginal Method - I

- Recall: $\quad Y \mid X=x \sim(1-\pi(x)) f_{b}+\pi(x) f_{s}, \quad f_{b}$ known
- Denote $\bar{\pi}:=\mathbb{E}_{X}[\pi(X)]$, overall proportion of non-nulls (signals)
- Observe that marginally, $\quad Y \sim(1-\bar{\pi}) f_{b}+\bar{\pi} f_{s}$

When $\bar{\pi}$ is known (problem can be solved easily)

- Maximize the marginal likelihood of Y (Kiefer-Wolfowitz MLE):

$$
\hat{f}_{s}=\underset{f_{s} \in \tilde{F}}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left[(1-\bar{\pi}) f_{b}\left(Y_{i}\right)+\bar{\pi} f_{s}\left(Y_{i}\right)\right]
$$

- Maximize the joint likelihood of (X, Y) with \hat{f}_{s} fixed:

$$
\hat{\pi}=\underset{\pi \in \Pi}{\operatorname{argmax}} \sum_{i=1}^{n} \log \left[\left(1-\pi\left(X_{i}\right)\right) f_{b}\left(Y_{i}\right)+\pi\left(X_{i}\right) \hat{f}_{s}\left(Y_{i}\right)\right]
$$

- Can take a grid of $\bar{\pi}$ values in practice and choose the one with the highest likelihood

Marginal Methods

- They are computationally simpler and faster.
- They are reasonably accurate (the fullmle approach mostly outperforms them).
- They provide good starting points for fullmle.

Plot compares the MSEs in estimating the LFDRs at data points for 3 methods 1,2 and FDRreg, a method in Scott et al. [2015].
${ }^{1}$ The fullmle method used starting points obtained from the marginal methods
${ }^{2}$ Marginal II method was fitted using the parametric regression of $|Y|$ on X

Summary

- A maximum likelihood procedure that incorporates covariate information in a (nonparametric) two-component mixture model .
- Used NP mixture models to estimate the unknown f_{s}.

Summary

- A maximum likelihood procedure that incorporates covariate information in a (nonparametric) two-component mixture model .
- Used NP mixture models to estimate the unknown f_{s}.
- Although our approach is nonparametric, our methods avoid the need to specify tuning parameter(s).
- Almost parametric rate of estimation.

Summary

- A maximum likelihood procedure that incorporates covariate information in a (nonparametric) two-component mixture model .
- Used NP mixture models to estimate the unknown f_{s}.
- Although our approach is nonparametric, our methods avoid the need to specify tuning parameter(s).
- Almost parametric rate of estimation.
- NPMLE in mixture models deserves more attention.
- See "Two-component Mixture Model in the Presence of Covariates" —Nabarun Deb, Sujayam Saha, Adityanand Guntuboyina and Bodhisattva Sen, at https://arxiv.org/pdf/1810.07897.pdf and the associated R package at https://github.com/NabarunD/NPMLEmix.

Summary

- A maximum likelihood procedure that incorporates covariate information in a (nonparametric) two-component mixture model .
- Used NP mixture models to estimate the unknown f_{s}.
- Although our approach is nonparametric, our methods avoid the need to specify tuning parameter(s).
- Almost parametric rate of estimation.
- NPMLE in mixture models deserves more attention.
- See "Two-component Mixture Model in the Presence of Covariates" —Nabarun Deb, Sujayam Saha, Adityanand Guntuboyina and Bodhisattva Sen, at https://arxiv.org/pdf/1810.07897.pdf and the associated R package at https://github.com/NabarunD/NPMLEmix.

Thank You! Questions?

References I

Bradley Efron. Large-scale inference, volume 1 of Institute of Mathematical Statistics (IMS) Monographs. Cambridge University Press, Cambridge, 2010. ISBN 978-0-521-19249-1. doi: 10.1017/CBO9780511761362. URL http://dx.doi.org.ezproxy.cul.columbia.edu/10.1017/CB09780511761362. Empirical Bayes methods for estimation, testing, and prediction.
C. Genovese and L. Wasserman. A stochastic process approach to false discovery control. Ann. Statist., 32(3):1035-1061, 2004a. ISSN 0090-5364. doi: 10.1214/009053604000000283. URL http://dx.doi.org/10.1214/009053604000000283.
Christopher Genovese and Larry Wasserman. A stochastic process approach to false discovery control. Annals of Statistics, pages 1035-1061, 2004b.

Nikolaos Ignatiadis, Bernd Klaus, Judith B Zaugg, and Wolfgang Huber. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nature methods, 13(7):577-580, 2016.
J. Kiefer and J. Wolfowitz. Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann. Math. Statist., 27:887-906, 1956. ISSN 0003-4851. doi: $10.1214 / \mathrm{aoms} / 1177728066$. URL
http://dx.doi.org/10.1214/aoms/1177728066.
Mette Langaas, Bo Henry Lindqvist, and Egil Ferkingstad. Estimating the proportion of true null hypotheses, with application to dna microarray data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(4):555-572, 2005.
Ang Li and Rina Foygel Barber. Multiple testing with the structure adaptive benjamini-hochberg algorithm. arXiv preprint arXiv:1606.07926, 2016.
B. G. Lindsay. Mixture models: Theory, geometry and applications. NSF-CBMS Regional Conference Series in Probability and Statistics, 5:1-163, 1995. ISSN 19355920. URL http://www.jstor.org/stable/4153184.
N. Meinshausen and J. Rice. Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. Ann. Statist., 34(1):373-393, 2006. ISSN 0090-5364. doi: 10.1214/009053605000000741. URL http://dx.doi.org/10.1214/009053605000000741.
Rohit Patra and Bodhisattva Sen. Estimation of a two-component mixture model with applications to multiple testing. J. R. Stat. Soc. Ser. B. Stat. Methodol., 78(4):869-893, 2016. ISSN 1369-7412. doi: 10.1111/rssb.12148. URL http://dx.doi.org/10.1111/rssb. 12148.
James G Scott, Ryan C Kelly, Matthew A Smith, Pengcheng Zhou, and Robert E Kass. False discovery rate regression: an application to neural synchrony detection in primary visual cortex. Journal of the American Statistical Association, 110(510):459-471, 2015.
J. D. Storey. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol., 64(3):479-498, 2002. ISSN 1369-7412. doi: 10.1111/1467-9868.00346. URL http://dx.doi.org/10.1111/1467-9868.00346.

Matthew G Walker, Mario Mateo, Edward W Olszewski, Bodhisattva Sen, and Michael Woodroofe. Clean kinematic samples in dwarf spheroidals: An algorithm for evaluating membership and estimating distribution parameters when contamination is present. The Astronomical Journal, 137(2):3109, 2009.

False Discovery Rate

True Positive Rate

The observed FDR and true positive rate for the fullmle and FDRreg methods. We also compare with the "oracle" (that knows the true f_{s}^{0} and π^{0}), and also the "oracle" ignoring the covariates.

Plot compares the mean squared errors (MSEs) in estimating the LFDRs at data points for the 3 methods and FDRreg, a method in Scott et al. [2015].

True Positive Rate

The observed FDR (and true positive rate) for the fullmle and FDRreg methods. We also compare with the "oracle" (that knows the true f_{s} and π), and also the "oracle" (true) ignoring the covariates.

