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Mixture model with two-components

Data: Y1,Y2, . . . ,Yn
i.i.d.∼ f , f density (pdf) on R.

Two-groups model: f (y) = πfs(y) + (1− π)fb(y), y ∈ R.

fb is a known density function.

Unknowns: Mixing proportion π ∈ [0, 1] and pdf fs ( 6= fb).

Goals: Estimate π and fs (nonparametrically), under certain
structural assumptions.

Applications

In multiple testing problems — the z-scores are normally distributed
under H0 (i.e., fb is known), while their distribution under H1 is
unknown (Storey [2002], Genovese and Wasserman [2004b], Langaas
et al. [2005], Meinshausen and Rice [2006], Efron [2010] ...) where
π denotes the proportion of false null hypotheses

In contamination problems — application in astronomy
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Prostate data [Efron (2010)]

Genetic expression levels for n = 6033 genes for m1 = 50 control
subjects and m2 = 52 prostate cancer patients

Goal: To discover a small number of “interesting” genes whose
expression levels differ between the cancer and control patients

Such genes, once identified, might be further investigated for a
causal link to prostate cancer development

The two-sample t-statistic for testing significance of gene i is

ti =
x̄i (2)− x̄i (1)

si
∼ t100 [under H0i : µi (1) = µi (2)],

where si is an estimate of the standard error of x̄i (1)− x̄i (2).

Reject H0i if |ti | > cα (as HAi : µi (1) 6= µi (2))
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Z -score modeling

ti = x̄i (2)−x̄i (1)
si

≈ Zi + µi (2)−µi (1)
σi

, Zi ∼ N(0, 1) (approx).

Let ∆i := µi (2)−µi (1)
σi

— effect-size.

Thus, ti ∼ N(∆i , 1) (approx).

Assume that ∆i ’s are i.i.d. (1− π)δ0 + πG (G unknown DF).

Then t1, . . . , tn are i.i.d. (approx) and ti ≈ Zi + ∆i :

ti ∼ (1− π)φ(·) + π

∫
φ(· − u)dG (u) = (1− π)fb + πfs

where fb := φ(·) and

fs =

∫
φ(· − u)dG (u)

is a Gaussian location mixture. See Scott et al. [2015] for a related
example.

We will come back to this model later in the talk.
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Regression in a two-component mixture model

Let (X1,Y1), . . . , (Xn,Yn) be i.i.d. (X ,Y ) where

Y : comes from a two-component mixture model

X (∈ Rd): may provide information about membership

Astronomy example (Walker et al. [2009]): Radial velocity (RV) of stars
(n = 1266) from Carina (dSph), contaminated by Milky Way stars

Neural synchrony detection (Scott et al. [2015]); genomic studies

(Ignatiadis et al. [2016] ... )
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Question: How do we model the data (i.e., incorporate the covariates)?



Regression in a two-component mixture model
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Question: How do we model the data (i.e., incorporate the covariates)?



Regression in a two-component mixture model

Let (X1,Y1), . . . , (Xn,Yn) be i.i.d. (X ,Y ) where

Y : comes from a two-component mixture model

X (∈ Rd): may provide information about membership

Astronomy example (Walker et al. [2009]): Radial velocity (RV) of stars
(n = 1266) from Carina (dSph), contaminated by Milky Way stars

Neural synchrony detection (Scott et al. [2015]); genomic studies

(Ignatiadis et al. [2016] ... )

Radial Velocity (RV)
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Question: How do we model the data (i.e., incorporate the covariates)?



Model (Scott et al. [2015], Walker et al. [2009])

Let (X1,Y1), . . . , (Xn,Yn) be i.i.d. (X ,Y ) ∈ Rd × R where

Y |X = x ∼ π(x)fs + (1− π(x))fb

1 fb — known pdf on R
2 fs — unknown pdf on R belonging to a (non)-parametric class F

3 π : Rd → [0, 1] is an unknown (non)-parametric function; π ∈ Π

Suppose H is the unobserved latent variable (to (X ,Y )), i.e.,

H =

{
1, if Y comes from fs

0, if Y comes from fb

H|X = x ∼ Bernoulli(π(x)); Y |H = 1 ∼ fs and Y |H = 0 ∼ fb

Identifiability issues with this model?
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Identifiability

Two-groups model: Suppose
π ∈ Π := {constant functions in [0, 1]} and fs ∈ F (convex family of
densities) — Not identifiable (see Patra and Sen [2016], Genovese
and Wasserman [2004a]).

Two-groups model with covariates: Suppose
π ∈ Π := {non-decreasing functions in [0, 1] bounded above (< 1)}
and fs ∈ F (family of non-increasing densities) — Identifiable.

Discrete or continuous covariates: In general, even for “nice”
function classes Π (e.g., logistic function/probbit function), the
presence of discrete (say binary) covariates may not restore
identifiability.

A general version of identifiability conditions have been presented in
the paper.
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Model: Y |X = x ∼ π(x)fs + (1− π(x))fb, fb known

Unknowns: π ∈ Π and fs ∈ F

Note: Y |H = 1 ∼ fs and Y |H = 0 ∼ fb (H is the latent variable)

Goals

Estimate π(·) and the density fs(·)

Another important quantity to estimate is the posterior probability
of the latent variable being 0 (“null”)

P(H = 0|Y ,X ) =
(1− π(X ))fb(Y )

(1− π(X ))fb(Y ) + π(X )fs(Y )

In multiple testing this is the local false discovery rate LFDR(·, ·)

Obtain accurate estimates of LFDR(·, ·)



Model: Y |X = x ∼ π(x)fs + (1− π(x))fb, fb known

π ∈ Π and fs ∈ F are unknown

Some natural assumptions on fs(·) ∈ F

Arbitrary location mixture of unit-variance Gaussians, i.e.,

fs(y) =

∫
φ(y − u)dG (u) (G unknown DF);

arises in multiple testing problems when modeling the z-scores
(where G is the distribution of the nonzero effect sizes)

Any decreasing density on [0, 1] (useful in modeling p-values)

Some natural assumptions on π(·) ∈ Π

Parametric models, i.e., π(x) = (1 + e−β
>x)−1 (Scott et al. [2015])

Nonparametric models for π(·): monotonicity, regression splines,
piecewise constancy (Walker et al. [2009], Scott et al. [2015], Li and
Barber [2016])
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Estimation: (Nonparametric) Maximum Likelihood

Suppose fs ∈ F, e.g., F = {
∫
φ(· − u)dG (u) : G is DF}

Suppose π ∈ Π, e.g., Π = {(1 + e−β
>x)−1 : β ∈ Rd}

Denote the log-likelihood by

`(π, fs) :=
n∑

i=1

log
[
(1− π(Xi ))fb(Yi ) + π(Xi )fs(Yi )

]
, π ∈ Π, fs ∈ F

Maximum likelihood estimator (MLE):

(π̂, f̂s) = argmax
π∈Π,fs∈F

`(π, fs)

Non-convex problem; use EM algorithm (or alternating maximization)



The EM algorithm

The complete data log-likelihood of {(Xi ,Yi ,Hi )}ni=1 is
n∑

i=1

{
Hi log [π(Xi )fs(Yi )] + (1− Hi ) log [(1− π(Xi ))fb(Yi )]

}
E-step

As Hi ’s are unobserved we replace Hi ’s by their cond. expectations:

wi := E(Hi |Yi = y ,Xi = x) =
π(x)fs(y)

π(x)fs(y) + (1− π(x))fb(y)

We plug-in current estimates of fs and π to obtain ŵ = (ŵ1, . . . , ŵn)

M-step

Due to the particular form of the expected log-likelihood, this joint
maximization breaks into two isolated maximization problems:

π̂EM(ŵ,Π) := argmax
π∈Π

∑
[ŵi log π(Xi ) + (1− ŵi ) log (1− π(Xi ))]

f̂EM(ŵ,F) := argmax
fs∈F

∑
ŵi log fs(Yi )
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[ŵi log π(Xi ) + (1− ŵi ) log (1− π(Xi ))]
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Suppose π(x) = (1 + e−β
>x)−1; fs(y) =

∫
φ(y − u)dG(u),G is DF

The logistic likelihood problem can be solved using gradient descent:

π̂EM(ŵ,Π) = argmax
π∈Π

∑
[ŵi log π(Xi ) + (1− ŵi ) log (1− π(Xi ))]

Solving the Gaussian location mixture problem

Solving for any arbitrary Gaussian location mixture is a
Kiefer-Wolfowitz MLE (Kiefer and Wolfowitz [1956]):

f̂EM(ŵ,F) = argmax
fs=

∫
φ(·−u)dG(u),G is DF

n∑
i=1

ŵi log fs(Yi )

An infinite dimensional convex program (Lindsay [1995])

Resulting Ĝ is supported on at most n points in ConvexHull(Y1, . . . ,Yn)

Can be approximated by optimizing G over discrete distributions
with support in a grid in ConvexHull(Y1, . . . ,Yn)
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f̂EM(ŵ,F) = argmax
fs=

∫
φ(·−u)dG(u),G is DF

n∑
i=1

ŵi log fs(Yi )

An infinite dimensional convex program (Lindsay [1995])

Resulting Ĝ is supported on at most n points in ConvexHull(Y1, . . . ,Yn)

Can be approximated by optimizing G over discrete distributions
with support in a grid in ConvexHull(Y1, . . . ,Yn)



Suppose F = {
∫
φ(y − u)dG (u) : G is DF}

Suppose π ∈ Π, where Π is a VC subgraph class of functions with

VC dimension V (e.g., Π = {(1 + e−β
>x)−1 : β ∈ Rd})

Truth: (π0, f 0
s ) ∈ Π× F

(π̂, f̂s) is s.t. `(π̂, f̂s) ≥ `(π0, f 0
s ) (e.g., (π̂, f̂s) = argmax

π∈Π,fs∈F
`(π, fs))

Theorem (Deb, Saha, Guntuboyina and S. (2018))

Letting dH denote the Hellinger distance, define

d2((π̂, f̂s), (π, fs)) :=
1

n

n∑
i=1

d2
H

(
(1− π(Xi ))fb + π(Xi )fs , (1− π̂(Xi ))fb + π̂(Xi )f̂s

)
.

If Π has VC dimension V and G is supported on [−M,M],

E
[
d2((π̂, f̂s), (π

0, f 0
s ))
]

= O
(
M + V

n
(log n)2

)
.

Almost parametric (n−1) rate of convergence

Implications in estimating (denominator of) the posterior LFDR(·, ·)

The model need not be identifiable for the result to hold
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Marginal Method – II

Recall: Y |X = x ∼ (1− π(x))fb + π(x)fs , fb known

Regression of Y on X : E(Y |X = x) = (1− π(x))µb + π(x)µs

Whenever EY∼fb [Y ] =: µb 6= µs := EY∼fs [Y ], this poses a
(non-linear) regression problem (µb known, µs unknown):

(π̂, µ̂s) := argmin
π∈Π,µs∈R

n∑
i=1

(
Yi − µb − π(Xi )(µs − µb)

)2

Once π̂(·) is estimated,

f̂s := argmax
fs∈F

n∑
i=1

log
[
(1− π̂(Xi ))fb(Yi ) + π̂(Xi )fs(Yi )

]
can be solved using the Kiefer-Wolfowitz MLE
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Marginal Method – I

Recall: Y |X = x ∼ (1− π(x))fb + π(x)fs , fb known

Denote π̄ := EX [π(X )], overall proportion of non-nulls (signals)

Observe that marginally, Y ∼ (1− π̄)fb + π̄fs

When π̄ is known (problem can be solved easily)

Maximize the marginal likelihood of Y (Kiefer-Wolfowitz MLE):

f̂s = argmax
fs∈F

n∑
i=1

log
[
(1− π̄)fb(Yi ) + π̄fs(Yi )

]
Maximize the joint likelihood of (X ,Y ) with f̂s fixed:

π̂ = argmax
π∈Π

n∑
i=1

log
[
(1− π(Xi ))fb(Yi ) + π(Xi )f̂s(Yi )

]
Can take a grid of π̄ values in practice and choose the one with the
highest likelihood
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Marginal Methods

They are computationally simpler and faster.

They are reasonably accurate (the fullmle approach mostly
outperforms them).

They provide good starting points for fullmle.
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A setting from Scott et al. [2015]:

X = (X1,X2) ∼ (U(0, 1),U(0, 1))

π(x) =
1

1 + e3−1.5x1−1.5x2

fs = 0.48N (±2, 2) + 0.04N (0, 17)

Y |X = x ∼ (1− π(x))N (0, 1) + π(x)fs(·)
n = 10000

Plot compares the MSEs in estimating the LFDRs at data points for 3

methods1,2 and FDRreg, a method in Scott et al. [2015].

1The fullmle method used starting points obtained from the marginal methods
2Marginal II method was fitted using the parametric regression of |Y | on X



Summary

A maximum likelihood procedure that incorporates covariate
information in a (nonparametric) two-component mixture model .

Used NP mixture models to estimate the unknown fs .

Although our approach is nonparametric, our methods avoid the
need to specify tuning parameter(s).

Almost parametric rate of estimation.

NPMLE in mixture models deserves more attention.

See “Two-component Mixture Model in the Presence of Covariates”
—Nabarun Deb, Sujayam Saha, Adityanand Guntuboyina and
Bodhisattva Sen, at https://arxiv.org/pdf/1810.07897.pdf
and the associated R package at
https://github.com/NabarunD/NPMLEmix.

Thank You! Questions?

https://arxiv.org/pdf/1810.07897.pdf
https://github.com/NabarunD/NPMLEmix
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The observed FDR and true positive rate for the fullmle and FDRreg

methods. We also compare with the “oracle” (that knows the true f 0
s and π0),

and also the “oracle” ignoring the covariates.



Another setting from Scott et al.
[2015]:

X = (X1,X2) ∼ (U(0, 1),U(0, 1))

π(x) =
1

1 + e−3.25+3.5x2
1−3.5x2

2

fs = 0.48N (±2, 2) + 0.04N (0, 17)

Y |X = x ∼ (1− π(x))N (0, 1) + π(x)fs(·)
n = 10000

Plot compares the mean squared errors (MSEs) in estimating the LFDRs at

data points for the 3 methods and FDRreg, a method in Scott et al. [2015].
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