
Measuring Association/Predictive power on
Topological Spaces Using Kernels and Graphs

Nabarun Deb

Department of Statistics
Columbia University

New England Statistics Symposium 2021

Joint work with Promit Ghosal (MIT), Zhen Huang (Columbia U)
and Bodhisattva Sen (Columbia U)

November 13, 2020

https://arxiv.org/pdf/2010.01768.pdf

https://arxiv.org/pdf/2012.14804.pdf

https://arxiv.org/pdf/2010.01768.pdf
https://arxiv.org/pdf/2012.14804.pdf


Formal Introduction: Pearson’s Correlation and beyond?

(X ,Y ) ∼ µ on X × Y (topological spaces) with marginals µX , µY

Informal goal: Construct a measure that can capture the

strength of association between X and Y

beyond simply testing for independence.

Motivation: Pearson’s correlation

Given (X ,Y ) ∼ ν ≡ bivariate normal, the Pearson’s correlation ρXY
measures the strength of association

ρXY = 0 iff X and Y are independent

ρXY approaches its maximum absolute value (i.e., 1) iff one variable
looks more and more like a noiseless linear function of the other, i.e.,
Y = cX + d .

What are truly nonparametric analogs of the Pearson’s correlation?
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Think of nonparametric regression

This asymmetry is fundamental in even simple regression problems,
consider the noiseless version:

Y = f (X ).

If f (·) is a many-to-one function, predicting X from Y is not possible
whereas predicting Y from X is immediate irrespective of f (·).

Pearson’s correlation being symmetric cannot distinguish between
the two problems — same is the case for most measures of
dependence.

Design a directional measure that

1 is “small” for “predicting” X from Y .
2 but large for “predicting” Y from X .



Introduction

Want a measure that equals 0 iff X ⊥⊥ Y , equals 1 iff Y is “some
function” of X .

For the past century, most measures of association/dependence only
focus on testing for independence, i.e., they equal 0 iff Y ⊥⊥ X ;
e.g., distance correlation (Székely et al., 2007), Hilbert-Schmidt
independence criterion (Gretton et al., 2008), graph-based measures
(Friedman and Rafsky, 1983), etc.

Recent advances

In Dette et al., 2013, Chatterjee, 2019. When X = Y = R, authors
propose measures that equal 0 iff Y ⊥⊥ X and 1 iff Y is a
measurable function of X . Extended to the case X = Rd1 and
Y = R in Azadkia and Chatterjee, 2019.

Bottleneck: They rely on the canonical ordering of R.
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Structure

1 A family of measures of association
A measure on X = Rd1 , Y = Rd2

Interpretability and monotonicity
Extending to a class of kernel measures

2 Estimating the kernel measure
Proposing the estimator
Computational complexity
Consistency
Rate of estimation
A central limit theorem when X ⊥⊥ Y
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A measure on X = Rd1, Y = Rd2

Basic strategy

Most measures of dependence quantify a “discrepancy” between µ
and µX ⊗ µY .

We construct a discrepancy between µY |X (regular conditional
distribution) and µY .

When Y ⊥⊥ X , µY |X = µY . When Y is a measurable function of X ,
µY |X is a degenerate measure.

Define

T ≡ T (µ) := 1− E‖Y ′ − Ỹ ′‖2
E‖Y1 − Y2‖2

.

Generate Y1,Y2
i.i.d.∼ µY .

(X ′,Y ′, Ỹ ′) is generated as: draw X ′ ∼ µX and then
Y ′|X ′ ∼ µY |X ′ , Ỹ ′|X ′ ∼ µY |X ′ such that Y ′ and Ỹ ′ are
conditionally independent given X ′.
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Some intuition

Suppose d2 = 1.

Consider a slight modification:

T ∗ ≡ T ∗(µ) := 1− E|Y ′ − Ỹ ′|2

E|Y1 − Y2|2
.

Plug-in E|Y ′ − Ỹ ′|2 = E|Y ′|2 + E|Ỹ ′|2 − 2EY ′Ỹ ′.

Do the same for the denominator.

Simplify T ∗(µ) to get:

T ∗(µ) =
Var(E[Y |X ])

Var(Y )
∈ [0, 1].

T can be interpreted as the proportion of the variance of Y
explained by X .



Back to T (µ) — More intuition

Recall X ′ ∼ µX and Y ′|X ′ ∼ µY |X ′ , Ỹ ′|X ′ ∼ µY |X ′ such that Y ′

and Ỹ ′ are conditionally independent given X ′.

T = 1− E‖Y ′ − Ỹ ′‖2
E‖Y1 − Y2‖2

.

Y ′ ∼ µY , Ỹ ′ ∼ µY but Y ′ and Ỹ ′ are not independent.

Suppose Y ⊥⊥ X , then

µY |X ′ = µY ,Y
′, Ỹ ′

i.i.d.∼ µY

and so T = 0.

Suppose Y = h(X ) for some measurable h(·), then

Y ′ = Ỹ ′ = h(X ′), ‖Y ′ − Ỹ ′‖2 = 0

and so T = 1.
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A formal result

Theorem

Suppose E‖Y1‖2 <∞. Then

T ∈ [0, 1].

T = 0 iff Y ⊥⊥ X .

T = 1 iff Y is a noiseless measurable function of X .

The choice ‖·‖2 is important. For instance,

1− E‖Y ′ − Ỹ ′‖22
E‖Y1 − Y2‖22

can be 0 even when Y 6⊥⊥ X .
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Monotonicity

What happens in the interval (0, 1)?

T for bivariate normal

Suppose µ is the bivariate normal distribution with means µX , µY ,
variances σ2

X , σ
2
Y and correlation ρ. Then

T (µ) = 1−
√

1− ρ2.

The above function is strictly convex and increasing in |ρ|.

Other examples: Let
Y = λg(X ) + ε

where λ ≥ 0, ε,X are independent, ε′
i.i.d.∼ ε such that ε− ε′ is unimodal.

Then T (µ) is montonic in λ.

In nonparametric regression models with additive noise, T turns out to
be a monotonic function of the noise variance.
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Preliminaries: reproducing kernel Hilbert spaces (RKHS)

RKHS on Y: linear, complete, inner product space of functions from
Y → R; non-negative definite kernel; “reproducing property”.

Consider a non-negative definite kernel function on Y —
K : Y × Y → R satisfying

m∑
i,j=1

αiαjK (yi , yj) ≥ 0

for all αi ∈ R, yi ∈ Y and m ≥ 1.

Note K (y , ·) : Y → R.

Identify y 7→ K (y , ·) (feature map).

(Reproducing property) For all f ∈ H, y ∈ Y, 〈f ,K (y , ·)〉H = f (y).
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RKHS (continued) - useful identities

As a consequence of the reproducing property:

〈K (y1, ·),K (y2, ·)〉H = K (y1, y2).

Using the above,

‖K (y1, ·)− K (y2, ·)‖2H
= 〈K (y1, ·),K (y1, ·)〉H + 〈K (y2, ·),K (y2, ·)〉H − 2〈K (y1, ·),K (y2, ·)〉H
= K (y1, y1) + K (y2, y2)− 2K (y1, y2).
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Kernel measure of association (KMAc)

Recall K (y , ·) : Y → R for all y ∈ Y, y identified with K (y , ·) and

T = 1− E‖Y ′ − Ỹ ′‖2
E‖Y1 − Y2‖2

.

Replace Y1 − Y2 with K (Y1, ·)− K (Y2, ·).

Define

ηK := 1− E‖K (Y ′, ·)− K (Ỹ ′, ·)‖2H
E‖K (Y1, ·)− K (Y2, ·)‖2H
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KMAc (continued)

Theorem (informal)

Suppose K (·, ·) is characteristic and EK (Y1,Y1) <∞, then:

ηK ∈ [0, 1].

ηk = 0 iff Y ⊥⊥ X .

ηK = 1 iff Y is a noiseless measurable function of X .

A kernel is characteristic if

EP [K (Y , ·)] = EQ [K (Y , ·)] =⇒ P = Q

for probability measures P and Q.
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Examples

Characteristic kernels — Gretton et al., 2012, Sejdinovic et al., 2013,
Lyons 2013, 2014. Some examples include:

(Distance) K (y1, y2) := ‖y1‖2 + ‖y2‖2 − ‖y1 − y2‖2. In this case,

ηK = T .

Bounded kernels: (Gaussian) K (y1, y2) := exp(−‖y1 − y2‖22) and
(Laplacian) K (y1, y2) := exp(−‖y1 − y2‖1).

For non-Euclidean domains such as video filtering, robotics, text
documents, human action recognition, characteristic kernels
constructed in Fukumizu et al., 2009, Danafar et al., 2010,
Christmann and Steinwart, 2010.



Examples

Characteristic kernels — Gretton et al., 2012, Sejdinovic et al., 2013,
Lyons 2013, 2014. Some examples include:

(Distance) K (y1, y2) := ‖y1‖2 + ‖y2‖2 − ‖y1 − y2‖2. In this case,

ηK = T .

Bounded kernels: (Gaussian) K (y1, y2) := exp(−‖y1 − y2‖22) and
(Laplacian) K (y1, y2) := exp(−‖y1 − y2‖1).

For non-Euclidean domains such as video filtering, robotics, text
documents, human action recognition, characteristic kernels
constructed in Fukumizu et al., 2009, Danafar et al., 2010,
Christmann and Steinwart, 2010.



Outline
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Estimation strategy

Suppose (X1,Y1), . . . , (Xn,Yn) ∼ µ.

X is endowed with metric ρX (·, ·).

Recall

ηK =
EK (Y ′, Ỹ ′)− EK (Y1,Y2)

EK (Y1,Y1)− EK (Y1,Y2)
.

From standard U-Statistic theory,

EK (Y1,Y1) ≈ 1

n

n∑
i=1

K (Yi ,Yi )

and

1

n

n∑
i=1

K (Yi ,Yi+1) ≈ EK (Y1,Y2) ≈ 1

n(n − 1)

∑
i 6=j

K (Yi ,Yj).

Hardest term to estimate is EK (Y ′, Ỹ ′).
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EK (Y ′, Ỹ ′)− EK (Y1,Y2)

EK (Y1,Y1)− EK (Y1,Y2)
.

From standard U-Statistic theory,

EK (Y1,Y1) ≈ 1

n

n∑
i=1

K (Yi ,Yi )

and

1

n

n∑
i=1

K (Yi ,Yi+1) ≈ EK (Y1,Y2) ≈ 1

n(n − 1)

∑
i 6=j

K (Yi ,Yj).

Hardest term to estimate is EK (Y ′, Ỹ ′).



Estimation (continued)

Suppose X is supported on a finite set. A natural estimator

E[E[K (Y ′, Ỹ ′)|X ′]] ≈ 1

n

n∑
i=1

1

|{j : Xj = Xi}|
∑

j :Xj=Xi

K (Yi ,Yj).

If X is continuous, replace Xj = Xi with ρX (Xi ,Xj) being “small”.

Construct a graph Gn on {X1, . . . ,Xn} which joins points that are
“close” to each other.

For example, consider a k-nearest neighbor graph (k-NNG) - join
every point to its first k nearest neighbors.
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E[E[K (Y ′, Ỹ ′)|X ′]] ≈ 1

n

n∑
i=1

1

|{j : Xj = Xi}|
∑

j :Xj=Xi

K (Yi ,Yj).

If X is continuous, replace Xj = Xi with ρX (Xi ,Xj) being “small”.

Construct a graph Gn on {X1, . . . ,Xn} which joins points that are
“close” to each other.

For example, consider a k-nearest neighbor graph (k-NNG) - join
every point to its first k nearest neighbors.



Estimation (continued)

Replace

1

n

n∑
i=1

1

|{j : Xj = Xi}|
∑

j :Xj=Xi

K (Yi ,Yj)

with
1

n

n∑
i=1

1

di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)

where E (Gn) — edge/neighbor set of Gn and di — degree of Xi .

Define

η̂n :=

1
n

∑n
i=1

1
di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)− 1
n(n−1)

∑
i 6=j K (Yi ,Yj)

1
n

∑n
i=1 K (Yi ,Yi )− 1

n(n−1)
∑

i 6=j K (Yi ,Yj)
.

η̂lin
n :=

1
n

∑n
i=1

1
di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)− 1
n

∑N
i=1 K (Yi ,Yi+1)

1
n

∑n
i=1 K (Yi ,Yi )− 1

n

∑N
i=1 K (Yi ,Yi+1)
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Computational complexity

Suppose Gn is the k-NNG; computed in O(kn log n) time.

Recall

η̂lin
n =

1

n

n∑
i=1

1

di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)︸ ︷︷ ︸
O(kn log n)

− 1
n

∑N
i=1 K (Yi ,Yi+1)

1

n

n∑
i=1

K (Yi ,Yi )︸ ︷︷ ︸
O(n)

− 1
n

∑N
i=1 K (Yi ,Yi+1)

.

η̂lin
n is computable in near linear time as opposed to η̂n which may

be quadratic. In practice, for certain kernels, one may compute η̂n
approximately, in near linear time.
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Estimation (continued)

Theorem (informal)

Suppose Gn satisfies the “close”-ness condition in the sense that:∑
(i,j)∈E(Gn)

ρX (Xi ,Xj)

|E (Gn)|
P−→ 0

and EK (Y1,Y1)2+ε <∞, then

η̂n
P−→ ηK , η̂lin

n
P−→ ηK .

Under additional moments, convergence happens almost surely in µ
(not required if bounded kernels are used).

No smoothness assumption needed on EK [(·,Y )|X ].
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Examples of graphs (Euclidean)

Minimum spanning trees, k-nearest neighbor graphs - join every
point to its first k nearest neighbors.

For k-NNG, η̂n is consistent provided k = o(n/ log n).

Recall
η̂n − ηK = (η̂n − Eη̂n)︸ ︷︷ ︸

Variance term

+ (Eη̂n − ηK )︸ ︷︷ ︸
Bias term

. The bias ↑ with k. However the variances stabilizes because

1

n

n∑
i=1

1

di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj).

For consistent estimation, a 1-NNG can be chosen (no tuning
required).
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Rate of estimation (k-NNG)

Theorem (informal)

Suppose K (·, ·) is bounded, E[K (Y , ·)|X = x ] is Lipschitz with respect to
ρX (·, ·) and the support of µX has intrinsic dimension d0. Then

η̂lin
n − ηK =

OP((
√
k/n)(log n)) if d0 ≤ 2,

OP((k/n)1/d0(log n)) if d0 > 2.

The rate of estimation adapts to the intrinsic dimension of µX

(extension of Azadkia and Chatterjee, 2019).

Recall
η̂n − ηK = (η̂n − Eη̂n)︸ ︷︷ ︸

Variance term∼n−1/2

+ (Eη̂n − ηK )︸ ︷︷ ︸
Bias term↑k

.

When Y ⊥⊥ X , bias is always 0 and variance improves with k —
useful in independence testing.
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Limiting null (general graph)

Theorem (informal)

Suppose µ = µX ⊗ µY , then there exists sequences of random variables
Vn = OP(1) and V lin

n such that

√
nη̂lin

n

V lin
n

d−→ N (0, 1),

√
nη̂n
Vn

d−→ N (0, 1).

(Proof) Uses U-statistics projection theory and Stein’s method on
dependency graphs.

(General) a uniform CLT holds for a suitable class of graphs Gn, i.e.,

sup
Gn∈Gn

sup
x∈R
|P(
√
nη̂lin

n /Vn ≤ x)− Φ(x)| n→∞−→ 0.

Theorem holds for data driven choices Ĝn provided
P(Ĝn ∈ Gn)

n→∞−→ 1.
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P(Ĝn ∈ Gn)

n→∞−→ 1.



Independence testing

Consider the testing problem:

H0 : µ = µX ⊗ µY vs H1 : µ 6= µX ⊗ µY .

Recall ηK = 0 iff µ = µX ⊗ µY , ηK > 0 otherwise, η̂n
P−→ ηK .

A natural test:
Reject if

√
nη̂lin

n /Vn ≥ zα.

Consistent and maintains level, i.e.,

lim
n→∞

PH0(Reject H0) = α, lim
n→∞

PH1(Reject H0) = 1.

Near linear complexity.
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Summary

Class of kernel measures of association (KMAc) when Y admits a
non-negative definite kernel.

Class of graph-based, consistent estimators (X - metric space) for
KMAc without smoothness on the conditional distribution.

When k-NNG is used, the rate of convergence adapts to the intrinsic
dimension of the support µX .

Established a pivotal Gaussian limit uniformly over a class of graphs.

A linear time estimator + a near linear time test of statistical
independence.

A wide array of numerical experiments with real and simulated
datasets - see https://arxiv.org/pdf/2012.14804.pdf.

https://arxiv.org/pdf/2012.14804.pdf
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Simulations (choice of k)

(X (1),X (2),Y (1),Y (2)) ∼ µ supported on R4 where
(X (1),Y (1)), (X (2),Y (2)) are i.i.d., where

(W-shaped)

Y (1) = |X (1) + 0.5|1(X (1) ≤ 0) + |X (1) − 0.5|1(X (1) > 0) + 0.75λε,

ε ∼ N (0, 1) with varying λ.

(Sinusoidal)
Y (1) = cos (8πX (1)) + 3λε,

ε ∼ N (0, 1) with varying λ.

Sample size n = 300.



W-shaped (KG -Gaussian kernel, KD-Distance kernel)
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Sinusoidal (KG -Gaussian kernel, KD-Distance kernel)
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Conditional association

Recall

ηK =

EK (Y ′, Ỹ ′)︸ ︷︷ ︸
∗µY |X

−EK (Y1,Y2)︸ ︷︷ ︸
∗µY

EK (Y1,Y1)− EK (Y1,Y2)

where X ′ ∼ µX , Y ′, Ỹ ′ are drawn independently from µY |X ′ .

The surrogate in the numerator show we are comparing µY |X with
µY .

For conditional association, i.e., how closely is Y associated with Z
given X , define:

η̃K :=

EK (Y ′2, Ỹ
′
2)︸ ︷︷ ︸

∗µY |X,Z

−EK (Y ′, Ỹ ′)︸ ︷︷ ︸
∗µY |X

EK (Y1,Y1)− EK (Y ′, Ỹ ′)

where (X ′,Z ′) ∼ µXZ and Y ′2, Ỹ
′
2 are drawn independently from

µY |(X ′,Z ′).
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where (X ′,Z ′) ∼ µXZ and Y ′2, Ỹ
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Estimating Conditional association

Recall

T1,n :=
1

n

n∑
i=1

1

di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj) ≈ EK (Y ′, Ỹ ′)

where E (Gn) — edge/neighbor set of Gn, the nearest neighbor
graph on (X1, . . . ,Xn) and di — degree of Xi .

Use the estimator

ˆ̃ηK :=

1
n

∑n
i=1

1
d̃i

∑
j :(i,j)∈E(G̃n)

K (Yi ,Yj)− T1,n

1
n

∑n
i=1 K (Yi ,Yi )− T1,n

,

G̃n — edge/neighbor set of Gn, the nearest neighbor graph on
(X1,Z1), . . . , (Xn,Zn) and d̃i — degree of (Xi ,Zi ).

Then
ˆ̃ηK

P−→ η̃K .

Also η̃K ∈ [0, 1] and η̃K = 0 iff Y ⊥⊥ Z |X and η̃K = 1 if Y is a
measurable function of X ,Z .
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Local power in independence testing

Consider the family of alternatives (Farlie):

fX ,Y (x , y) = (1− rn)f1(x)f2(y) + rng(x , y).

What happens to test based on η̂lin
n as rn → 0?

For d1 ≤ 7, power converges to 1 if rn � n−1/4 and to 0 if
rn � n−1/4.

(Blessing of dimensionality?): For d1 ≥ 9, power converges to 1 if

rn � n−
(

1
2−

2
d1

)
and power converges to 0 if rn � n−

(
1
2−

2
d1

)
.

For d = 8, the power depends on a rather complicated tradeoff.
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Illustration of monotonicity

(X (1),X (2),Y (1),Y (2)) ∼ µ supported on R4 where
(X (1),Y (1)), (X (2),Y (2)) are i.i.d., where

(W-shaped)

Y (1) = |X (1) + 0.5|1(X (1) ≤ 0) + |X (1) − 0.5|1(X (1) > 0) + 0.75λε,

ε ∼ N (0, 1) with varying λ.



W-shaped (noiseless)
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W-shaped (noisy)
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W-shaped (monotonicity)
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Galton Peas dataset

Mean diameters of sweet peas in mother plants and daughter plants
(700× 2)



Galton Peas (continued)

7 unique values for the mother (X ) and 52 for the daughter (Y ).

X and Y seem to be associated.

Pearson’s correlation = 0.35, p-value � 0.05.

Can we say something more?
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A curious observation (Chatterjee, 2020)

Every row has exactly one non-zero element.
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Galton Peas (continued)

Recall X -mother, Y -daughter.

It is more convenient to predict X from Y (Parent from daughter)
than the other way round.

Pearson’s correlation being symmetric cannot distinguish between
the two problems — same is the case for most measures of
dependence.

How to design a measure that captures this asymmetry?
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