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Maximal Inequalities for empirical processes

e Consider X1, Xz, ..., X, from some distribution 1 (not necessarily
independent) on R

@ Define the empirical measure

Mn = %ZJX,..
i=1
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Maximal Inequalities for empirical processes

e Consider X1, Xz, ..., X, from some distribution 1 (not necessarily
independent) on R

@ Define the empirical measure

Mn = %Zéx,..
i=1

In particular, B, f = [ fdu, =237 f(X).

@ An empirical process is typically

{/fd(un—u): fe]—"}.

Our goal — maximal inequality

Assuming some mixing conditions, get an upper bound of

E sup ‘/fd(un —u)"
feF
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Why do we care?

o Consider d =1 and F := {1(—o00,x] : x € R}, then

sup\/fd(un—m\ — sup |Fal) — F().
feF xeR

where

n

Fa(x) = %ZI(X; <x), and F(x)=P(X < x).
i=1
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Why do we care?

o Consider d =1 and F := {1(—o00,x] : x € R}, then

SUP‘/fd(un—M)‘ — sup |Fal) — F().
feF xeR

where

n

1
= P < = < .
Fo(x) p ;:1 1(X; <x), and F(x)=P(X <x)
@ Applications:

o Kolmogorov-Smirnov goodness of fit (i.i.d. setting)

Visup|Fy(x) = F(x)] = Op(1).

Also see DKW inequality — Dvoretzsky, Kiefer, Wolfowitz (1956),
Massart (1990)

o Extensions to two-sample testing, independence testing, etc.
e Multivariate extensions with coordinatewise ordering Naaman (2021)
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Other applications (i.i.d. case)

@ Nonparametric least squares regression
Y = f*(X,) + €, E[e,-|X,-] =0.
Estimate f* using

~

fp=argmingcr Z(Y, — (X))
i=1

Maximal inequalities govern £ S°7 (£,(X;) — £*(X;))? (see Vaart
and Wellner (1996), Sara van de Geer (2009))
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~

fp=argmingcr Z(Y, — (X))
i=1

Maximal inequalities govern £ S°7 (£,(X;) — £*(X;))? (see Vaart
and Wellner (1996), Sara van de Geer (2009))

e Function fitting with non convex optimization such as deep neural
nets (Schmidt-Hieber (2020), Ohn and Kim (2022))

e Optimal transport distance and map estimation (see Hitter and
Rigollet (2021), Manole and Weed (2021), Deb, Ghosal, and Sen
(2021))
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Why dependence?

Dependence can arise in many natural settings:

e Time series data in economics and finance (e.g. stock market data,
weather data)

@ Markov chains, hidden markov models

@ Online learning, where data comes in stream (e.g. object tracking,
strategic classification, reinforcement learning etc.)

@ Longitudinal medical data (e.g. sequence of data of a patient over a
time horizon)
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Some related work

o Nonparametric least squares under mixing conditions (see Mohri and
Rostamizadeh (2008), Zhang, Cao, and Yan (2012), Roy,
Balasubramanian, and Erdogdu (2021))

e Function fitting with deep neural nets under mixing conditions (see
Ma and Safikhani (2022), Kengne and Modou (2023), Kurisu,
Fukami, and Koike (2023))

@ "Wasserstein” distance (optimal transport) estimation under mixing
conditions (see Fournier and Guillin (2015), Bernton et al. (2019),
Cazelles et al. (2020))
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Some related work

o Nonparametric least squares under mixing conditions (see Mohri and
Rostamizadeh (2008), Zhang, Cao, and Yan (2012), Roy,
Balasubramanian, and Erdogdu (2021))

e Function fitting with deep neural nets under mixing conditions (see
Ma and Safikhani (2022), Kengne and Modou (2023), Kurisu,
Fukami, and Koike (2023))

@ "Wasserstein” distance (optimal transport) estimation under mixing
conditions (see Fournier and Guillin (2015), Bernton et al. (2019),
Cazelles et al. (2020))

In this talk ...

— Most existing work focuses on exponentially fast mixing or simple
function classes F

— We focus on much stronger dependence (including sub-polynomial
mixing) and complex function classes. We examine if i.i.d. like rates can
still be recovered
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e General empirical process bounds
@ Main mixing assumptions — Formal Problem Statement
@ Long and Short Range Dependence
@ General maximal inequalities
@ Proof ideas

© Shape restricted convex regression
@ Bounded convex Least squares (LS) estimator
@ Faster rates and localization

© Conclusion
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Notions of mixing for dependence

@ Given a strictly stationary sequence of random variables {X;}+en on
a probability space (2,4, P)

8/22



Notions of mixing for dependence

@ Given a strictly stationary sequence of random variables {X;}+en on
a probability space (2,4, P)

@ Four (arguably) most popular used notion of dependence:

Q an) =sup;>15up  aco(x,) [P(AN B) = P(A)P(B)|

BEo(Xktnt1:00)

8/22



Notions of mixing for dependence

@ Given a strictly stationary sequence of random variables {X;}+en on
a probability space (2,4, P)

@ Four (arguably) most popular used notion of dependence:

Q an) =sup;>15up  aco(x,) [P(AN B) = P(A)P(B)|

BEo(Xktnt1:00)

@ (1) = supys1 E [subacoig) [P(A | 0(Xictnirion)) — P(A)]]

8/22



Notions of mixing for dependence

@ Given a strictly stationary sequence of random variables {X;}+en on
a probability space (2,4, P)

@ Four (arguably) most popular used notion of dependence:

Q an) =sup;>15up  aco(x,) [P(AN B) = P(A)P(B)|

BEo(Xktnt1ico)
@ (1) = supys1 E [subacoig) [P(A | 0(Xictnirion)) — P(A)]]

Q p(n) = SUPk>1 SUP fely(o(X1k)) |cor(f, g)]

8€0(Xitnt1:00)

8/22



Notions of mixing for dependence

@ Given a strictly stationary sequence of random variables {X;}+en on
a probability space (2,4, P)

@ Four (arguably) most popular used notion of dependence:

Q an) =sup;>15up  aco(x,) [P(AN B) = P(A)P(B)|

BEJ(Xk+n+1:oo)
@ 5(n) = UP1 B [sUPaco(ng ) [P(A | o(Xsninoc)) = P(A)]]

Q p(n) = SUPk>1 SUP fely(o(X1k)) |cor(f, g)]

8€0(Xitnt1:00)

Q &(n) =supi>15Up  aco(x,) IP(A [ B) —P(A)]

BEo(Xktnt1:00)

@ Relation between the notions:

2a(n) < B(n) < 6(n), 4a(n) < p(n) < 2¢/0(n)
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[£-mixing and Berbee's Coupling

B-mixing is typically regarded as second most general notion:

Q (Eberlein, (1984)) established CLT for S-mixing sequence under the
condition B(n) = n~(1+e)(1+2/9)

@ (Yu (1994)), (Doukhan et.al. (1994), (1995)) extended some results
of standard empirical process theory for S-mixing sequence.

@ (Karandikar et.al. (2009)) extended some aspects of Bayesian
learning to B-mixing sequences.

@ (Bernton et al. (2019), Goldfeld et al. (2022)) show +/n rates for
parameter estimation and regularized OT under B-mixing
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B-mixing is typically regarded as second most general notion:

Q (Eberlein, (1984)) established CLT for S-mixing sequence under the
condition B(n) = n~(1+e)(1+2/9)

@ (Yu (1994)), (Doukhan et.al. (1994), (1995)) extended some results
of standard empirical process theory for S-mixing sequence.

@ (Karandikar et.al. (2009)) extended some aspects of Bayesian
learning to B-mixing sequences.

@ (Bernton et al. (2019), Goldfeld et al. (2022)) show +/n rates for
parameter estimation and regularized OT under B-mixing

Theorem (Berbee's Coupling)

Given (X, Y) and an independent U ~Unif (0,1) on the same probability
space, one can construct Y* = (X, Y, U) such that:

O V"2 Y and Y* I X.
Q P(Y # Y*) = B(a(X),a(Y)).
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@ General empirical process bounds

@ Long and Short Range Dependence
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An ambiguous definition

e Using B-mixing as a proxy, short range and long range dependencies
typically mean

Zﬁ(k) < oo Short range,

K
Z,B(k) =00 Long range.
k

@ Same with other mixing coefficients.
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An ambiguous definition

e Using B-mixing as a proxy, short range and long range dependencies
typically mean

Zﬁ(k) < oo Short range,

k
Z,B(k) = oo Long range.
k
@ Same with other mixing coefficients.

@ By Rio (1995), Dedecker (2003), say {X;}: is a strictly stationary
[-mixing sequence, then

Var(} " Xe) S n(1+ > B(k)).
t=1 k=0

Under long range dependence, behavior of Zgzl X: can be very
different from i.i.d. case.
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Long range and short range dependency (continued)

@ Standard properties like WLLN, CLT continues to hold under SRD:

@ A general version of CLT was proved in Peligrad, (1990)

© Consistency for non-parametric kernel density estimation was
established in (Roussas, (1990)).

© Bernstein type concentration inequality was established in
(Merlevede, Peligrad and Rio, (1990)).

@ In OT, Bernton et al. (2019), Goldfeld et al. (2022) obtain limit
theory under SRD with S-mixing
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Long range and short range dependency (continued)

@ Standard properties like WLLN, CLT continues to hold under SRD:
@ A general version of CLT was proved in Peligrad, (1990)

© Consistency for non-parametric kernel density estimation was
established in (Roussas, (1990)).

© Bernstein type concentration inequality was established in
(Merlevede, Peligrad and Rio, (1990)).

@ In OT, Bernton et al. (2019), Goldfeld et al. (2022) obtain limit
theory under SRD with S-mixing

@ In Fournier and Guillin (2015), rates were obtained for SRD with
p-mixing (same as i.i.d. case)

@ Properties under LRD is much less explored: a noteworthy example
is (Yu, 1994) where some properties of expected suprema of an
empirical process is established under LRD.

@ Also note that expected supremum of empirical processes don't just

depend on covariance bounds but on the “size” of the function class
11/22



Outline

@ General empirical process bounds

@ General maximal inequalities
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General maximal inequality with bracketing

@ Recall our goal: To bound

Esup‘/fd(un—u)‘

feF
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e Size of F: Bracketing number N(u, ||-||, F) is the number of pairs
[L;, U;] of functions such that ||[U; — Lj|| < u and given any f € F,
there exists jr satisfying
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@ Recall our goal: To bound

]Esup‘/fd(un—u)‘

feF

e Size of F: Bracketing number N(u, ||-||, F) is the number of pairs
[L;, U;] of functions such that ||[U; — Lj|| < u and given any f € F,
there exists jr satisfying

LjfgfS ijr’

@ An important function on the space of positive integers
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Maximal inequality with L., bracketing

Given u > 0, solve the following equation on positive integers:
q
8(a) = (1 +log N(u, 7. |]))

to get gn(u).
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Maximal inequality with L., bracketing

Given u > 0, solve the following equation on positive integers:
q
Blq) = — (1 +log N(u, 7, ||-[l<))

to get gn(u).

Informal bound

Suppose F has a Lo, diameter o (bounded above and below in n), then

E sup ‘ / fd(pn — u)’ S/,
feF

where

2> [ VA (@))iog N(u, 7. )
ﬁ

For i.i.d. data g,(u) =1, A(gs(u)) =1 and we get back usual bound
with integral of square root of log bracketing number
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Maximal inequality with L, bracketing, r > 2

e Given u > 0, the definition of g,(u) stays the same with |||/
replaced with |[|-||,.
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Maximal inequality with L, bracketing, r > 2

e Given u > 0, the definition of g,(u) stays the same with |||/
replaced with |||,

e Consider

Suppose F has a L, diameter o (bounded above and below in n), then

ESUP‘/fd(Nn —u)’ S,
feF

where

2> / " /A (@) Tog N(u, 7, [loe) dl
ﬁ

Note the degeneracy for r = 2. We will come back to this.
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@ Suppose o > 2 and F is a class of functions satisfying
log N(u, 7, |- o) < u™ =

~

Further assume 3, < (1 + k)~” for some 3 > 0
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@ Suppose o > 2 and F is a class of functions satisfying

log N(u, 7 [[|oc) 5 u™ 7.
Further assume 3, < (1 + k)~” for some 3 > 0
@ This will imply

qn(u) = (nu®) 5.

@ Plugging into the previous theorem gives (for d > 2s + 1),

o —w if B> Lo
1ZﬂmmﬁmW5{”«'ﬂ a1
n
=1

n~ B otherwise

Potential optimality

o The n~ % rate is not improvable in general; Birge and Massart, 1993

@ If & > 2 then in the long range dependence regime (1/(a — 1), 1),
we get the optimal n~w rates

15/22



@ General empirical process bounds

@ Proof ideas
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Proof ideas: Essential tools

@ Three key techniques for our proof is:

© Berbee's coupling Theorem (showed few slides before).
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Proof ideas: Essential tools

@ Three key techniques for our proof is:

© Berbee's coupling Theorem (showed few slides before).

@ Blocking technique of Bernstein. (In a sequence of dependent data,
if two blocks are far away, the dependence between them is meager,
goes back to Bernstein (1927).

© Chaining method with adaptive truncation (for non-Donsker class of
function, as integral of log bracketing number diverges near 0, c.f.
Ossiander (1987), Pollard (2002)

@ Our proof relies on the techniques developed in a series of works by
Doukhan, Massart and Rio (e.g. Rio (1993), DMR (1994, 1995)),
whilst the main difference is that our result generalizes to the case
when 5 <1
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© Shape restricted convex regression
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© Shape restricted convex regression
@ Bounded convex Least squares (LS) estimator
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An illustration: Multivariate convex regression

o Consider the least squares regression with stationary S-mixing data,
(X1, Y1), ..., (Xn, Ya), assume compact (polytopal) supports. Goal
is to estimate *(x) = E[Y|X = x] € F with the estimator

N

fn == argmingc Z(Y, — (X))
i=1
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is to estimate *(x) = E[Y|X = x] € F with the estimator

~

fn == argmingc Z(Y, — (X))
i=1

@ Suppose F is the class of convex functions on R9 for d > 5 which
are bounded by 1, then

d
2

log N(u, F, |I-l-) < Cru™>.

@ Plugging into the previous theorem gives (for d > 5),
n

. if B> 2
E(f(X) = £(X))* < { L Y .
n~ B+  otherwise

i

@ Rate is not improvable for LS estimator even under independence
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© Shape restricted convex regression

@ Faster rates and localization

17/22



Is this rate improvable?

@ Bounded convex LS estimator enjoys some tuning-free adaptation
when f* is affine, in the i.i.d. setting
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Is this rate improvable?

@ Bounded convex LS estimator enjoys some tuning-free adaptation
when f* is affine, in the i.i.d. setting

@ The rate of convergence is
E(f(X) = F(X))* o

ford > 4

This rate is known to not be improvable

@ The rate comes from solving the following equation:
[ ddtun 1)

@ Note the occurence of Ly norm which is not covered by our earlier
result

2
o ~E sup
FEF: ||f—F*[|1, <6,

18/22
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@ Stronger mixing condition v, = Bk V pk
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Maximal inequality with L, bracketing

@ Stronger mixing condition v, = Bk V pk

e Given u > 0, the definition of g,(u) stays the same with ||-||oc
replaced with ||-||2 and Sk with ~.

o Consider

Informal bound

Suppose F has a Ly diameter o (bounded above and below in n), then

E sup ‘ / fd(pn — u)‘ <12,
feF

where

22 [ VAGar@) og s 7 ) o
%
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Consider the multivariate shape-restricted regression setting from before.
Suppose that f* is k-piece affine, i.e., there exists k simplices in
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stronger mixing assumption, we have:
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Faster rates with stronger mixing

@ Assume stronger mixing vk = Sk V px S (L+ k)7

@ Then we can provide a bound for localized empirical processes with
respect to Lp-norm

Rates for adaptation

Consider the multivariate shape-restricted regression setting from before.
Suppose that f* is k-piece affine, i.e., there exists k simplices in
dimension d such that f* is affine on all of them. Then under the
stronger mixing assumption, we have:

als

E(f(X) — £5(X))* < n™
ford > 4(1 +~71)

In particular, if d > 8, then there exists an interval in the long range
dependence regime (4/(d — 4),1) where optimal i.i.d. like rates are
recovered
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Comparison with Yu (1994)

@ The exponent % is not new/unexpected as it “almost” occurs in
Yu (1994).
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Comparison with Yu (1994)

@ The exponent % is not new/unexpected as it “almost” occurs in

Yu (1994).
@ To be more precise, for 0 < 8 < 1, (Yu, 1994) obtained a bound of
the form .
op(n~#1), forall0<t<f
when the function class is “small”, i.e.,

lOgN(f’ ””0036) S, - |Og€'

@ Three key differences:
@ Our function classes of interest have larger size

@ Choosing t = 3, which replaces o(-) by O(-).

© Translating the asymptotic bound to bounds on finite sample error
bounds
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Summary

@ Our maximal inequalities can be used in various applications, e.g.
o Non-parametric regression with adaptation
o Regularized and unregularized optimal transport
e Function fitting with deep neural nets in both low and high
dimensions
o Classification under non-convex loss function
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@ Our maximal inequalities can be used in various applications, e.g.
o Non-parametric regression with adaptation
o Regularized and unregularized optimal transport
e Function fitting with deep neural nets in both low and high

dimensions
o Classification under non-convex loss function

o Our analysis indicates a new threshold on 3 (when 3(j) ~ j=%),
below which we get slower rate (in comparison to i.i.d. setup) relies
on the underlying dimension/complexity of function classes.

e Ongoing work:
@ Relax the mixing condition to «(j) (strong mixing).
@ Tail bound and asymptotic limit theorem, especially when 8 < 1.
© Improve localization bounds

@ Minimax lower bounds

Thank you. Questions?
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