Trade-off Between Dependence and Complexity in Empirical Processes

Nabarun Deb
University of Chicago Booth School of Business
https://nabarund.github.io/

IISA 2024

September 4, 2025

Collaborator

Debarghya Mukherjee, Department of Mathematics and Statistics, Boston University

https://debarghya-mukherjee.github.io/

- Consider X_1, X_2, \dots, X_n from some distribution μ (not necessarily independent) on \mathbb{R}^d
- Define the empirical measure

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

- Consider X_1, X_2, \dots, X_n from some distribution μ (not necessarily independent) on \mathbb{R}^d
- Define the empirical measure

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

In particular, $\mathbb{E}_{\mu_n} f = \int f d\mu_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$.

- Consider X_1, X_2, \dots, X_n from some distribution μ (not necessarily independent) on \mathbb{R}^d
- Define the empirical measure

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

In particular, $\mathbb{E}_{\mu_n} f = \int f d\mu_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$.

An empirical process is typically

$$\left\{ \int f \, d(\mu_n - \mu) : \, f \in \mathcal{F} \right\}.$$

- Consider X_1, X_2, \dots, X_n from some distribution μ (not necessarily independent) on \mathbb{R}^d
- Define the empirical measure

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

In particular, $\mathbb{E}_{\mu_n} f = \int f d\mu_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$.

An empirical process is typically

$$\left\{ \int f \, d(\mu_n - \mu) : \, f \in \mathcal{F} \right\}.$$

Our goal — maximal inequality

Assuming some mixing conditions, get an upper bound of

$$\mathbb{E}\sup_{f\in\mathcal{F}}\bigg|\int f\ d(\mu_n-\mu)\bigg|.$$

Why do we care?

ullet Consider d=1 and $\mathcal{F}:=\{\mathbf{1}(-\infty,x]:\ x\in\mathbb{R}\}$, then

$$\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)\right|=\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|,$$

where

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \le x), \text{ and } F(x) = P(X \le x).$$

Why do we care?

ullet Consider d=1 and $\mathcal{F}:=\{\mathbf{1}(-\infty,x]:\ x\in\mathbb{R}\}$, then

$$\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)\right|=\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|,$$

where

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \le x), \quad \text{and} \quad F(x) = P(X \le x).$$

- Applications:
 - Kolmogorov-Smirnov goodness of fit (i.i.d. setting)

$$\sqrt{n}\sup_{x}|F_n(x)-F(x)|=O_p(1).$$

Also see *DKW inequality* — Dvoretzsky, Kiefer, Wolfowitz (1956), Massart (1990)

Why do we care?

ullet Consider d=1 and $\mathcal{F}:=\{\mathbf{1}(-\infty,x]:\ x\in\mathbb{R}\}$, then

$$\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)\right|=\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|,$$

where

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \le x), \quad \text{and} \quad F(x) = P(X \le x).$$

- Applications:
 - Kolmogorov-Smirnov goodness of fit (i.i.d. setting)

$$\sqrt{n}\sup_{x}|F_n(x)-F(x)|=O_p(1).$$

Also see *DKW inequality* — Dvoretzsky, Kiefer, Wolfowitz (1956), Massart (1990)

- Extensions to two-sample testing, independence testing, etc.
- Multivariate extensions with coordinatewise ordering Naaman (2021)

Other applications (i.i.d. case)

Nonparametric least squares regression

$$Y_i = f^*(X_i) + \epsilon_i, \quad \mathbb{E}[\epsilon_i|X_i] = 0.$$

Estimate f^* using

$$\hat{f}_n = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

Maximal inequalities govern $\frac{1}{n}\sum_{i=1}^{n}(\hat{f}_n(X_i)-f^*(X_i))^2$ (see Vaart and Wellner (1996), Sara van de Geer (2009))

Other applications (i.i.d. case)

Nonparametric least squares regression

$$Y_i = f^*(X_i) + \epsilon_i, \quad \mathbb{E}[\epsilon_i|X_i] = 0.$$

Estimate f^* using

$$\hat{f}_n = \mathop{\rm arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

Maximal inequalities govern $\frac{1}{n} \sum_{i=1}^{n} (\hat{f}_n(X_i) - f^*(X_i))^2$ (see Vaart and Wellner (1996), Sara van de Geer (2009))

 Function fitting with non convex optimization such as deep neural nets (Schmidt-Hieber (2020), Ohn and Kim (2022))

Other applications (i.i.d. case)

Nonparametric least squares regression

$$Y_i = f^*(X_i) + \epsilon_i, \quad \mathbb{E}[\epsilon_i|X_i] = 0.$$

Estimate f^* using

$$\hat{f}_n = \mathop{\mathsf{arg\,min}}_{f \in \mathcal{F}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

Maximal inequalities govern $\frac{1}{n}\sum_{i=1}^{n}(\hat{f}_n(X_i)-f^*(X_i))^2$ (see Vaart and Wellner (1996), Sara van de Geer (2009))

- Function fitting with non convex optimization such as deep neural nets (Schmidt-Hieber (2020), Ohn and Kim (2022))
- Optimal transport distance and map estimation (see Hütter and Rigollet (2021), Manole and Weed (2021), Deb, Ghosal, and Sen (2021))

Why dependence?

Dependence can arise in many natural settings:

- Time series data in economics and finance (e.g. stock market data, weather data)
- Markov chains, hidden markov models
- Online learning, where data comes in stream (e.g. object tracking, strategic classification, reinforcement learning etc.)
- Longitudinal medical data (e.g. sequence of data of a patient over a time horizon)

Some related work

- Nonparametric least squares under mixing conditions (see Mohri and Rostamizadeh (2008), Zhang, Cao, and Yan (2012), Roy, Balasubramanian, and Erdogdu (2021))
- Function fitting with deep neural nets under mixing conditions (see Ma and Safikhani (2022), Kengne and Modou (2023), Kurisu, Fukami, and Koike (2023))
- "Wasserstein" distance (optimal transport) estimation under mixing conditions (see Fournier and Guillin (2015), Bernton et al. (2019), Cazelles et al. (2020))

Some related work

- Nonparametric least squares under mixing conditions (see Mohri and Rostamizadeh (2008), Zhang, Cao, and Yan (2012), Roy, Balasubramanian, and Erdogdu (2021))
- Function fitting with deep neural nets under mixing conditions (see Ma and Safikhani (2022), Kengne and Modou (2023), Kurisu, Fukami, and Koike (2023))
- "Wasserstein" distance (optimal transport) estimation under mixing conditions (see Fournier and Guillin (2015), Bernton et al. (2019), Cazelles et al. (2020))

In this talk ...

- Most existing work focuses on exponentially fast mixing or simple function classes ${\cal F}$
- We focus on much stronger dependence (including sub-polynomial mixing) and complex function classes. We examine if i.i.d. like rates can still be recovered

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- 2 Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- 3 Conclusion

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- 2 Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- 3 Conclusion

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- 2 Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- Conclusion

• Given a strictly stationary sequence of random variables $\{X_t\}_{t\in\mathbb{N}}$ on a probability space $(\Omega,\mathcal{A},\mathbb{P})$

- Given a strictly stationary sequence of random variables $\{X_t\}_{t\in\mathbb{N}}$ on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- Four (arguably) most popular used notion of dependence:

- Given a strictly stationary sequence of random variables $\{X_t\}_{t\in\mathbb{N}}$ on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- Four (arguably) most popular used notion of dependence:

- Given a strictly stationary sequence of random variables $\{X_t\}_{t\in\mathbb{N}}$ on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- Four (arguably) most popular used notion of dependence:

$$\bullet \ \alpha(n) = \sup_{k \ge 1} \sup_{B \in \sigma(X_{k+n+1:\infty})} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|$$

- Given a strictly stationary sequence of random variables $\{X_t\}_{t\in\mathbb{N}}$ on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- Four (arguably) most popular used notion of dependence:

$$\bullet \ \alpha(n) = \sup_{k \ge 1} \sup_{B \in \sigma(X_{k+n+1:\infty})} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|$$

Relation between the notions:

$$2\alpha(n) \le \beta(n) \le \phi(n), \quad 4\alpha(n) \le \rho(n) \le 2\sqrt{\phi(n)}$$

β -mixing and Berbee's Coupling

 β -mixing is typically regarded as second most general notion:

- **(Eberlein, (1984))** established CLT for β -mixing sequence under the condition $\beta(n) = n^{-(1+\epsilon)(1+2/\delta)}$.
- **②** (Yu (1994)), (Doukhan et.al. (1994), (1995)) extended some results of standard empirical process theory for β -mixing sequence.
- **(**Karandikar et.al. (2009)) extended some aspects of Bayesian learning to β -mixing sequences.
- **(Bernton et al. (2019), Goldfeld et al. (2022)) show \sqrt{n} rates for parameter estimation and regularized OT under \beta-mixing**

β -mixing and Berbee's Coupling

 β -mixing is typically regarded as second most general notion:

- **(Eberlein, (1984))** established CLT for β -mixing sequence under the condition $\beta(n) = n^{-(1+\epsilon)(1+2/\delta)}$.
- **(Yu** (1994)), (Doukhan et.al. (1994), (1995)) extended some results of standard empirical process theory for β -mixing sequence.
- **(**Karandikar et.al. (2009)) extended some aspects of Bayesian learning to β -mixing sequences.
- **(Bernton et al. (2019), Goldfeld et al. (2022)) show \sqrt{n} rates for parameter estimation and regularized OT under \beta-mixing**

Theorem (Berbee's Coupling)

Given (X,Y) and an independent $U \sim Unif(0,1)$ on the same probability space, one can construct $Y^* = f(X,Y,U)$ such that:

- $Y^* \stackrel{\mathscr{L}}{=} Y \text{ and } Y^* \perp \!\!\!\perp X.$

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- 2 Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- Conclusion

An ambiguous definition

• Using β -mixing as a *proxy*, short range and long range dependencies typically mean

$$\sum_{k} \beta(k) < \infty \quad \text{Short range},$$

$$\sum_{k} \beta(k) = \infty \quad \text{Long range}.$$

• Same with other mixing coefficients.

An ambiguous definition

• Using β -mixing as a proxy, short range and long range dependencies typically mean

$$\sum_{k} \beta(k) < \infty \quad \text{Short range},$$

$$\sum_{k} \beta(k) = \infty \quad \text{Long range.}$$

- Same with other mixing coefficients.
- By Rio (1995), Dedecker (2003), say $\{X_t\}_t$ is a strictly stationary β -mixing sequence, then

$$\operatorname{\mathsf{Var}}(\sum_{t=1}^n X_t) \lesssim n(1+\sum_{k=0}^n eta(k)).$$

Under long range dependence, behavior of $\sum_{t=1}^{n} X_t$ can be very different from i.i.d. case.

- Standard properties like WLLN, CLT continues to hold under SRD:
 - A general version of CLT was proved in Peligrad, (1990)
 - Consistency for non-parametric kernel density estimation was established in (Roussas, (1990)).
 - Bernstein type concentration inequality was established in (Merlevede, Peligrad and Rio, (1990)).
 - **3** In OT, Bernton et al. (2019), Goldfeld et al. (2022) obtain limit theory under SRD with β -mixing

- Standard properties like WLLN, CLT continues to hold under SRD:
 - A general version of CLT was proved in Peligrad, (1990)
 - Consistency for non-parametric kernel density estimation was established in (Roussas, (1990)).
 - Bernstein type concentration inequality was established in (Merlevede, Peligrad and Rio, (1990)).
 - **1** In OT, Bernton et al. (2019), Goldfeld et al. (2022) obtain limit theory under SRD with β -mixing
 - Φ In Fournier and Guillin (2015), rates were obtained for SRD with ρ-mixing (same as i.i.d. case)

- Standard properties like WLLN, CLT continues to hold under SRD:
 - A general version of CLT was proved in Peligrad, (1990)
 - Consistency for non-parametric kernel density estimation was established in (Roussas, (1990)).
 - Bernstein type concentration inequality was established in (Merlevede, Peligrad and Rio, (1990)).
 - **1** In OT, Bernton et al. (2019), Goldfeld et al. (2022) obtain limit theory under SRD with β -mixing
 - § In Fournier and Guillin (2015), rates were obtained for SRD with ρ-mixing (same as i.i.d. case)
- Properties under LRD is much less explored: a noteworthy example is (Yu, 1994) where some properties of expected suprema of an empirical process is established under LRD.

- Standard properties like WLLN, CLT continues to hold under SRD:
 - A general version of CLT was proved in Peligrad, (1990)
 - Consistency for non-parametric kernel density estimation was established in (Roussas, (1990)).
 - Bernstein type concentration inequality was established in (Merlevede, Peligrad and Rio, (1990)).
 - **1** In OT, Bernton et al. (2019), Goldfeld et al. (2022) obtain limit theory under SRD with β -mixing
 - § In Fournier and Guillin (2015), rates were obtained for SRD with ρ-mixing (same as i.i.d. case)
- Properties under LRD is much less explored: a noteworthy example is (Yu, 1994) where some properties of expected suprema of an empirical process is established under LRD.
- Also note that expected supremum of empirical processes don't just depend on covariance bounds but on the "size" of the function class

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- Conclusion

General maximal inequality with bracketing

• Recall our goal: To bound

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)\right|$$

General maximal inequality with bracketing

• Recall our goal: To bound

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)\right|$$

• Size of \mathcal{F} : Bracketing number $N(u, \|\cdot\|, \mathcal{F})$ is the number of pairs $[L_j, U_j]$ of functions such that $\|U_j - L_j\| \le u$ and given any $f \in \mathcal{F}$, there exists j_f satisfying

$$L_{j_f} \leq f \leq U_{j_f}$$

General maximal inequality with bracketing

• Recall our goal: To bound

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)\right|$$

• Size of \mathcal{F} : Bracketing number $N(u, \|\cdot\|, \mathcal{F})$ is the number of pairs $[L_j, U_j]$ of functions such that $\|U_j - L_j\| \le u$ and given any $f \in \mathcal{F}$, there exists j_f satisfying

$$L_{j_f} \leq f \leq U_{j_f}$$

An important function on the space of positive integers

$$\Lambda(q) := \sum_{k=0}^{q-1} \beta_k.$$

Maximal inequality with L_{∞} bracketing

Given u > 0, solve the following equation on positive integers:

$$\beta(q) \approx \frac{q}{n}(1 + \log N(u, \mathcal{F}, \|\cdot\|_{\infty}))$$

to get $q_n(u)$.

Maximal inequality with L_{∞} bracketing

Given u > 0, solve the following equation on positive integers:

$$\beta(q) \approx \frac{q}{n} (1 + \log N(u, \mathcal{F}, \|\cdot\|_{\infty}))$$

to get $q_n(u)$.

Informal bound

Suppose $\mathcal F$ has a L_∞ diameter σ (bounded above and below in n), then

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\int f\,d(\mu_n-\mu)\right|\lesssim n^{-1/2}a,$$

where

$$a \geq \int_{rac{a}{\sqrt{\Lambda}}}^{\sigma} \sqrt{\Lambda(q_n(u)) \log N(u, \mathcal{F}, \|\cdot\|_{\infty})} du$$

For i.i.d. data $q_n(u) = 1$, $\Lambda(q_n(u)) = 1$ and we get back usual bound with integral of square root of log bracketing number

• Given u > 0, the definition of $q_n(u)$ stays the same with $\|\cdot\|_{\infty}$ replaced with $\|\cdot\|_r$.

- Given u > 0, the definition of $q_n(u)$ stays the same with $\|\cdot\|_{\infty}$ replaced with $\|\cdot\|_r$.
- Consider

$$\Lambda_r(q) := \sum_{k=0}^{q-1} \beta_k^{1-\frac{2}{r}}.$$

- Given u > 0, the definition of $q_n(u)$ stays the same with $\|\cdot\|_{\infty}$ replaced with $\|\cdot\|_r$.
- Consider

$$\Lambda_r(q) := \sum_{k=0}^{q-1} \beta_k^{1-\frac{2}{r}}.$$

Informal bound

Suppose \mathcal{F} has a L_r diameter σ (bounded above and below in n), then

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)
ight|\lesssim n^{-1/2}a,$$

where

$$a \geq \int_{\frac{a}{\sqrt{n}}}^{\sigma} \sqrt{\Lambda_r(q_n(u)) \log N(u, \mathcal{F}, \|\cdot\|_{\infty})} du$$

- Given u > 0, the definition of $q_n(u)$ stays the same with $\|\cdot\|_{\infty}$ replaced with $\|\cdot\|_r$.
- Consider

$$\Lambda_r(q) := \sum_{k=0}^{q-1} \beta_k^{1-\frac{2}{r}}.$$

Informal bound

Suppose \mathcal{F} has a L_r diameter σ (bounded above and below in n), then

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)
ight|\lesssim n^{-1/2}a,$$

where

$$a \geq \int_{rac{a}{\sqrt{n}}}^{\sigma} \sqrt{\Lambda_r(q_n(u)) \log N(u, \mathcal{F}, \|\cdot\|_{\infty})} du$$

Note the degeneracy for r = 2. We will come back to this.

 \bullet Suppose $\alpha > {\rm 2}$ and ${\cal F}$ is a class of functions satisfying

$$\log N(u, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim u^{-\frac{1}{\alpha}}.$$

Further assume $\beta_k \leq (1+k)^{-\beta}$ for some $\beta > 0$

 \bullet Suppose $\alpha > 2$ and ${\cal F}$ is a class of functions satisfying

$$\log N(u, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim u^{-\frac{1}{\alpha}}.$$

Further assume $\beta_k \leq (1+k)^{-\beta}$ for some $\beta > 0$

This will imply

$$q_n(u)=(nu^\alpha)^{\frac{1}{1+\beta}}.$$

• Suppose $\alpha > 2$ and ${\cal F}$ is a class of functions satisfying

$$\log N(u, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim u^{-\frac{1}{\alpha}}.$$

Further assume $\beta_k \leq (1+k)^{-\beta}$ for some $\beta > 0$

This will imply

$$q_n(u)=(nu^{\alpha})^{\frac{1}{1+\beta}}.$$

• Plugging into the previous theorem gives (for $d \ge 2s + 1$),

$$\frac{1}{n}\sum_{i=1}^n \mathbb{E}(\hat{f}_n(X_i) - f^*(X_i))^2 \lesssim \begin{cases} n^{-\frac{1}{\alpha}} & \text{if } \beta > \frac{1}{\alpha-1} \\ n^{-\frac{\beta}{\beta+1}} & \text{otherwise} \end{cases}.$$

• Suppose $\alpha > 2$ and ${\cal F}$ is a class of functions satisfying

$$\log N(u, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim u^{-\frac{1}{\alpha}}.$$

Further assume $\beta_k \leq (1+k)^{-\beta}$ for some $\beta > 0$

This will imply

$$q_n(u)=(nu^\alpha)^{\frac{1}{1+\beta}}.$$

• Plugging into the previous theorem gives (for $d \ge 2s + 1$),

$$\frac{1}{n}\sum_{i=1}^n \mathbb{E}(\hat{f}_n(X_i) - f^*(X_i))^2 \lesssim \begin{cases} n^{-\frac{1}{\alpha}} & \text{if } \beta > \frac{1}{\alpha-1} \\ n^{-\frac{\beta}{\beta+1}} & \text{otherwise} \end{cases}.$$

Potential optimality

• The $n^{-\frac{1}{\alpha}}$ rate is not improvable in general; Birge and Massart, 1993

• Suppose $\alpha > 2$ and ${\cal F}$ is a class of functions satisfying

$$\log N(u, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim u^{-\frac{1}{\alpha}}.$$

Further assume $\beta_k \leq (1+k)^{-\beta}$ for some $\beta > 0$

This will imply

$$q_n(u)=(nu^{\alpha})^{\frac{1}{1+\beta}}.$$

• Plugging into the previous theorem gives (for $d \ge 2s + 1$),

$$\frac{1}{n}\sum_{i=1}^n \mathbb{E}(\hat{f}_n(X_i) - f^*(X_i))^2 \lesssim \begin{cases} n^{-\frac{1}{\alpha}} & \text{if } \beta > \frac{1}{\alpha-1} \\ n^{-\frac{\beta}{\beta+1}} & \text{otherwise} \end{cases}.$$

Potential optimality

- The $n^{-\frac{1}{\alpha}}$ rate is not improvable in general; Birge and Massart, 1993
- If $\alpha>2$ then in the long range dependence regime $(1/(\alpha-1),1)$, we get the optimal $n^{-\frac{1}{\alpha}}$ rates

Outline

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- Conclusion

- Three key techniques for our proof is:
 - Berbee's coupling Theorem (showed few slides before).

- Three key techniques for our proof is:
 - Berbee's coupling Theorem (showed few slides before).
 - Blocking technique of Bernstein. (In a sequence of dependent data, if two blocks are far away, the dependence between them is meager, goes back to Bernstein (1927).

- Three key techniques for our proof is:
 - Berbee's coupling Theorem (showed few slides before).
 - Blocking technique of Bernstein. (In a sequence of dependent data, if two blocks are far away, the dependence between them is meager, goes back to Bernstein (1927).
 - Chaining method with adaptive truncation (for non-Donsker class of function, as integral of log bracketing number diverges near 0, c.f. Ossiander (1987), Pollard (2002)

- Three key techniques for our proof is:
 - Berbee's coupling Theorem (showed few slides before).
 - Blocking technique of Bernstein. (In a sequence of dependent data, if two blocks are far away, the dependence between them is meager, goes back to Bernstein (1927).
 - Chaining method with adaptive truncation (for non-Donsker class of function, as integral of log bracketing number diverges near 0, c.f. Ossiander (1987), Pollard (2002)
- Our proof relies on the techniques developed in a series of works by Doukhan, Massart and Rio (e.g. Rio (1993), DMR (1994, 1995)), whilst the main difference is that our result generalizes to the case when $\beta<1$

Outline

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- 2 Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- 3 Conclusion

Outline

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- 2 Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- 3 Conclusion

• Consider the least squares regression with stationary β -mixing data, $(X_1, Y_1), \ldots, (X_n, Y_n)$, assume compact (polytopal) supports. Goal is to estimate $f^*(x) = E[Y|X = x] \in \mathcal{F}$ with the estimator

$$\hat{f}_n := \operatorname{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

• Consider the least squares regression with stationary β -mixing data, $(X_1, Y_1), \ldots, (X_n, Y_n)$, assume compact (polytopal) supports. Goal is to estimate $f^*(x) = E[Y|X = x] \in \mathcal{F}$ with the estimator

$$\hat{f}_n := \operatorname{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

• Suppose \mathcal{F} is the class of convex functions on \mathbb{R}^d for $d \geq 5$ which are bounded by 1, then

$$\log N(u,\mathcal{F},\|\cdot\|_r) \lesssim C_r u^{-\frac{d}{2}}.$$

• Consider the least squares regression with stationary β -mixing data, $(X_1, Y_1), \ldots, (X_n, Y_n)$, assume compact (polytopal) supports. Goal is to estimate $f^*(x) = E[Y|X=x] \in \mathcal{F}$ with the estimator

$$\hat{f}_n := \operatorname{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

• Suppose \mathcal{F} is the class of convex functions on \mathbb{R}^d for $d \geq 5$ which are bounded by 1, then

$$\log N(u, \mathcal{F}, \|\cdot\|_r) \lesssim C_r u^{-\frac{d}{2}}.$$

• Plugging into the previous theorem gives (for $d \ge 5$),

$$\mathbb{E}(\hat{f}_n(X) - f^*(X))^2 \lesssim \begin{cases} n^{-\frac{2}{d}} & \text{if } \beta > \frac{2}{d-2} \\ n^{-\frac{\beta}{\beta+1}} & \text{otherwise} \end{cases}.$$

• Consider the least squares regression with stationary β -mixing data, $(X_1, Y_1), \ldots, (X_n, Y_n)$, assume compact (polytopal) supports. Goal is to estimate $f^*(x) = E[Y|X = x] \in \mathcal{F}$ with the estimator

$$\hat{f}_n := \operatorname{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

• Suppose \mathcal{F} is the class of convex functions on \mathbb{R}^d for $d \geq 5$ which are bounded by 1, then

$$\log N(u, \mathcal{F}, \|\cdot\|_r) \lesssim C_r u^{-\frac{d}{2}}.$$

• Plugging into the previous theorem gives (for $d \ge 5$),

$$\mathbb{E}(\hat{f}_n(X) - f^*(X))^2 \lesssim \begin{cases} n^{-\frac{2}{d}} & \text{if } \beta > \frac{2}{d-2} \\ n^{-\frac{\beta}{\beta+1}} & \text{otherwise} \end{cases}.$$

• Rate is not improvable for LS estimator even under independence

Outline

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- 2 Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- Conclusion

• Bounded convex LS estimator enjoys some tuning-free adaptation when f^* is affine, in the i.i.d. setting

- Bounded convex LS estimator enjoys some tuning-free adaptation when f^* is affine, in the i.i.d. setting
- The rate of convergence is

$$\mathbb{E}(\hat{f}_n(X) - f^*(X))^2 \lesssim n^{-\frac{4}{d}}$$

for d > 4

- Bounded convex LS estimator enjoys some tuning-free adaptation when f^* is affine, in the i.i.d. setting
- The rate of convergence is

$$\mathbb{E}(\hat{f}_n(X) - f^*(X))^2 \lesssim n^{-\frac{4}{d}}$$

for d > 4

• This rate is known to not be improvable

- Bounded convex LS estimator enjoys some tuning-free adaptation when f* is affine, in the i.i.d. setting
- The rate of convergence is

$$\mathbb{E}(\hat{f}_n(X) - f^*(X))^2 \lesssim n^{-\frac{4}{d}}$$

for d > 4

- This rate is known to not be improvable
- The rate comes from solving the following equation:

$$\delta_n^2 \sim \mathbb{E} \sup_{f \in \mathcal{F}: \|f - f^*\|_{L_2} \le \delta_n} \left| \int d d(\mu_n - \mu) \right|$$

- Bounded convex LS estimator enjoys some tuning-free adaptation when f* is affine, in the i.i.d. setting
- The rate of convergence is

$$\mathbb{E}(\hat{f}_n(X) - f^*(X))^2 \lesssim n^{-\frac{4}{d}}$$

for d > 4

- This rate is known to not be improvable
- The rate comes from solving the following equation:

$$\delta_n^2 \sim \mathbb{E} \sup_{f \in \mathcal{F}: \|f - f^*\|_{L_2} \le \delta_n} \left| \int d d(\mu_n - \mu) \right|$$

 Note the occurence of L₂ norm which is not covered by our earlier result

• Stronger mixing condition $\gamma_k = \beta_k \vee \rho_k$

- Stronger mixing condition $\gamma_k = \beta_k \vee \rho_k$
- Given u > 0, the definition of $q_n(u)$ stays the same with $\|\cdot\|_{\infty}$ replaced with $\|\cdot\|_2$ and β_k with γ_k .

- Stronger mixing condition $\gamma_k = \beta_k \vee \rho_k$
- Given u > 0, the definition of $q_n(u)$ stays the same with $\|\cdot\|_{\infty}$ replaced with $\|\cdot\|_2$ and β_k with γ_k .
- Consider

$$\Lambda_2(q) := \sum_{k=0}^{q-1} \gamma_k.$$

- Stronger mixing condition $\gamma_k = \beta_k \vee \rho_k$
- Given u > 0, the definition of $q_n(u)$ stays the same with $\|\cdot\|_{\infty}$ replaced with $\|\cdot\|_2$ and β_k with γ_k .
- Consider

$$\Lambda_2(q) := \sum_{k=0}^{q-1} \gamma_k.$$

Informal bound

Suppose \mathcal{F} has a L_2 diameter σ (bounded above and below in n), then

$$\mathbb{E}\sup_{f\in\mathcal{F}}\left|\int f\ d(\mu_n-\mu)\right|\lesssim n^{-1/2}a,$$

where

$$a \geq \int_{rac{a}{\sqrt{c_1}}}^{\sigma} \sqrt{\Lambda_2(q_n(u)) \log N(u, \mathcal{F}, \|\cdot\|_2)} du$$

• Assume stronger mixing $\gamma_k = \beta_k \vee \rho_k \lesssim (1+k)^{-\gamma}$

- Assume stronger mixing $\gamma_k = \beta_k \vee \rho_k \lesssim (1+k)^{-\gamma}$
- ullet Then we can provide a bound for localized empirical processes with respect to L_2 -norm

- Assume stronger mixing $\gamma_k = \beta_k \vee \rho_k \lesssim (1+k)^{-\gamma}$
- Then we can provide a bound for localized empirical processes with respect to L_2 -norm

Rates for adaptation

Consider the multivariate shape-restricted regression setting from before. Suppose that f^* is k-piece affine, i.e., there exists k simplices in dimension d such that f^* is affine on all of them. Then under the stronger mixing assumption, we have:

$$\mathbb{E}(\hat{f}_n(X) - f^*(X))^2 \lesssim n^{-\frac{4}{d}}$$

for $d > 4(1 + \gamma^{-1})$

- Assume stronger mixing $\gamma_k = \beta_k \vee \rho_k \lesssim (1+k)^{-\gamma}$
- Then we can provide a bound for localized empirical processes with respect to L₂-norm

Rates for adaptation

Consider the multivariate shape-restricted regression setting from before. Suppose that f^* is k-piece affine, i.e., there exists k simplices in dimension d such that f^* is affine on all of them. Then under the stronger mixing assumption, we have:

$$\mathbb{E}(\hat{f}_n(X) - f^*(X))^2 \lesssim n^{-\frac{4}{d}}$$

for
$$d > 4(1 + \gamma^{-1})$$

In particular, if d > 8, then there exists an interval in the long range dependence regime (4/(d-4),1) where optimal i.i.d. like rates are recovered

Outline

- General empirical process bounds
 - Main mixing assumptions Formal Problem Statement
 - Long and Short Range Dependence
 - General maximal inequalities
 - Proof ideas
- Shape restricted convex regression
 - Bounded convex Least squares (LS) estimator
 - Faster rates and localization
- 3 Conclusion

Comparison with Yu (1994)

• The exponent $\frac{\beta}{\beta+1}$ is not new/unexpected as it "almost" occurs in Yu (1994).

Comparison with Yu (1994)

- The exponent $\frac{\beta}{\beta+1}$ is not new/unexpected as it "almost" occurs in Yu (1994).
- To be more precise, for 0 < β < 1, (Yu, 1994) obtained a bound of the form

$$o_p(n^{-\frac{t}{t+1}})$$
, for all $0 < t < \beta$

when the function class is "small", i.e.,

$$\log \mathcal{N}(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) \lesssim -\log \epsilon.$$

Comparison with Yu (1994)

- The exponent $\frac{\beta}{\beta+1}$ is not new/unexpected as it "almost" occurs in Yu (1994).
- \bullet To be more precise, for 0 < β < 1, (Yu, 1994) obtained a bound of the form

$$o_p(n^{-\frac{t}{t+1}})$$
, for all $0 < t < \beta$

when the function class is "small", i.e.,

$$\log \mathcal{N}(\mathcal{F}, \|\cdot\|_{\infty}, \epsilon) \lesssim -\log \epsilon.$$

- Three key differences:
 - Our function classes of interest have larger size
 - **2** Choosing $t = \beta$, which replaces $o(\cdot)$ by $O(\cdot)$.
 - Translating the asymptotic bound to bounds on finite sample error bounds

- Our maximal inequalities can be used in various applications, e.g.
 - Non-parametric regression with adaptation
 - Regularized and unregularized optimal transport
 - Function fitting with deep neural nets in both low and high dimensions
 - Classification under non-convex loss function

- Our maximal inequalities can be used in various applications, e.g.
 - Non-parametric regression with adaptation
 - Regularized and unregularized optimal transport
 - Function fitting with deep neural nets in both low and high dimensions
 - Classification under non-convex loss function
- Our analysis indicates a new threshold on β (when $\beta(j) \sim j^{-\beta}$), below which we get slower rate (in comparison to i.i.d. setup) relies on the underlying dimension/complexity of function classes.

- Our maximal inequalities can be used in various applications, e.g.
 - Non-parametric regression with adaptation
 - Regularized and unregularized optimal transport
 - Function fitting with deep neural nets in both low and high dimensions
 - Classification under non-convex loss function
- Our analysis indicates a new threshold on β (when $\beta(j) \sim j^{-\beta}$), below which we get slower rate (in comparison to i.i.d. setup) relies on the underlying dimension/complexity of function classes.
- Ongoing work:
 - **1** Relax the mixing condition to $\alpha(j)$ (strong mixing).
 - ② Tail bound and asymptotic limit theorem, especially when $\beta < 1$.
 - Improve localization bounds
 - Minimax lower bounds

- Our maximal inequalities can be used in various applications, e.g.
 - Non-parametric regression with adaptation
 - Regularized and unregularized optimal transport
 - Function fitting with deep neural nets in both low and high dimensions
 - Classification under non-convex loss function
- Our analysis indicates a new threshold on β (when $\beta(j) \sim j^{-\beta}$), below which we get slower rate (in comparison to i.i.d. setup) relies on the underlying dimension/complexity of function classes.
- Ongoing work:
 - **1** Relax the mixing condition to $\alpha(j)$ (strong mixing).
 - ② Tail bound and asymptotic limit theorem, especially when $\beta < 1$.
 - Improve localization bounds
 - Minimax lower bounds

Thank you. Questions?