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Maximal Inequalities for empirical processes

Consider X1,X2, . . . ,Xn from some distribution µ (not necessarily
independent) on Rd

Define the empirical measure

µn =
1

n

n∑
i=1

δXi .

In particular, Eµn f =
∫
f dµn = 1

n

∑n
i=1 f (Xi ).

An empirical process is typically{∫
f d(µn − µ) : f ∈ F

}
.

Our goal — maximal inequality

Assuming some mixing conditions, get an upper bound of

E sup
f∈F

∣∣∣∣ ∫ f d(µn − µ)

∣∣∣∣.
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Why do we care?

Consider d = 1 and F := {1(−∞, x ] : x ∈ R}, then

sup
f∈F

∣∣∣∣ ∫ f d(µn − µ)

∣∣∣∣ = sup
x∈R

|Fn(x)− F (x)|,

where

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x), and F (x) = P(X ≤ x).

Applications:

Kolmogorov-Smirnov goodness of fit (i.i.d. setting)

√
n sup

x
|Fn(x)− F (x)| = Op(1).

Also see DKW inequality — Dvoretzsky, Kiefer, Wolfowitz (1956),
Massart (1990)
Extensions to two-sample testing, independence testing, etc.
Multivariate extensions with coordinatewise ordering Naaman (2021)
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Other applications (i.i.d. case)

Nonparametric least squares regression

Yi = f ∗(Xi ) + ϵi , E[ϵi |Xi ] = 0.

Estimate f ∗ using

f̂n = argminf∈F

n∑
i=1

(Yi − f (Xi ))
2.

Maximal inequalities govern 1
n

∑n
i=1(f̂n(Xi )− f ∗(Xi ))

2 (see Vaart
and Wellner (1996), Sara van de Geer (2009))

Function fitting with non convex optimization such as deep neural
nets (Schmidt-Hieber (2020), Ohn and Kim (2022))

Optimal transport distance and map estimation (see Hütter and
Rigollet (2021), Manole and Weed (2021), Deb, Ghosal, and Sen
(2021))
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Why dependence?

Dependence can arise in many natural settings:

Time series data in economics and finance (e.g. stock market data,
weather data)

Markov chains, hidden markov models

Online learning, where data comes in stream (e.g. object tracking,
strategic classification, reinforcement learning etc.)

Longitudinal medical data (e.g. sequence of data of a patient over a
time horizon)

5 / 22



Some related work

Nonparametric least squares under mixing conditions (see Mohri and
Rostamizadeh (2008), Zhang, Cao, and Yan (2012), Roy,
Balasubramanian, and Erdogdu (2021))

Function fitting with deep neural nets under mixing conditions (see
Ma and Safikhani (2022), Kengne and Modou (2023), Kurisu,
Fukami, and Koike (2023))

“Wasserstein” distance (optimal transport) estimation under mixing
conditions (see Fournier and Guillin (2015), Bernton et al. (2019),
Cazelles et al. (2020))

In this talk ...

— Most existing work focuses on exponentially fast mixing or simple
function classes F
— We focus on much stronger dependence (including sub-polynomial
mixing) and complex function classes. We examine if i.i.d. like rates can
still be recovered
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Outline

1 General empirical process bounds
Main mixing assumptions — Formal Problem Statement
Long and Short Range Dependence
General maximal inequalities
Proof ideas

2 Shape restricted convex regression
Bounded convex Least squares (LS) estimator
Faster rates and localization

3 Conclusion
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Notions of mixing for dependence

Given a strictly stationary sequence of random variables {Xt}t∈N on
a probability space (Ω,A,P)

Four (arguably) most popular used notion of dependence:

1 α(n) = supk≥1 sup A∈σ(X1:k )
B∈σ(Xk+n+1:∞)

|P(A ∩ B)− P(A)P(B)|

2 β(n) = supk≥1 E
[
supA∈σ(X1:k )

|P(A | σ(Xk+n+1:∞))− P(A)|
]

3 ρ(n) = supk≥1 sup f∈L2(σ(X1:k ))
g∈σ(Xk+n+1:∞)

|cor(f , g)|

4 ϕ(n) = supk≥1 sup A∈σ(X1:k )
B∈σ(Xk+n+1:∞)

|P(A | B)− P(A)|

Relation between the notions:

2α(n) ≤ β(n) ≤ ϕ(n), 4α(n) ≤ ρ(n) ≤ 2
√

ϕ(n)
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β-mixing and Berbee’s Coupling

β-mixing is typically regarded as second most general notion:

1 (Eberlein, (1984)) established CLT for β-mixing sequence under the
condition β(n) = n−(1+ϵ)(1+2/δ).

2 (Yu (1994)), (Doukhan et.al. (1994), (1995)) extended some results
of standard empirical process theory for β-mixing sequence.

3 (Karandikar et.al. (2009)) extended some aspects of Bayesian
learning to β-mixing sequences.

4 (Bernton et al. (2019), Goldfeld et al. (2022)) show
√
n rates for

parameter estimation and regularized OT under β-mixing

Theorem (Berbee’s Coupling)

Given (X ,Y ) and an independent U ∼Unif (0, 1) on the same probability
space, one can construct Y ∗ = f (X ,Y ,U) such that:

1 Y ∗ L
= Y and Y ∗ ⊥⊥ X.

2 P(Y ̸= Y ∗) = β(σ(X ), σ(Y )).
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Outline
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Faster rates and localization

3 Conclusion
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An ambiguous definition

Using β-mixing as a proxy, short range and long range dependencies
typically mean ∑

k

β(k) < ∞ Short range,

∑
k

β(k) = ∞ Long range.

Same with other mixing coefficients.

By Rio (1995), Dedecker (2003), say {Xt}t is a strictly stationary
β-mixing sequence, then

Var(
n∑

t=1

Xt) ≲ n(1 +
n∑

k=0

β(k)).

Under long range dependence, behavior of
∑n

t=1 Xt can be very
different from i.i.d. case.
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Long range and short range dependency (continued)

Standard properties like WLLN, CLT continues to hold under SRD:
1 A general version of CLT was proved in Peligrad, (1990)

2 Consistency for non-parametric kernel density estimation was
established in (Roussas, (1990)).

3 Bernstein type concentration inequality was established in
(Merlevede, Peligrad and Rio, (1990)).

4 In OT, Bernton et al. (2019), Goldfeld et al. (2022) obtain limit
theory under SRD with β-mixing

5 In Fournier and Guillin (2015), rates were obtained for SRD with
ρ-mixing (same as i.i.d. case)

Properties under LRD is much less explored: a noteworthy example
is (Yu, 1994) where some properties of expected suprema of an
empirical process is established under LRD.

Also note that expected supremum of empirical processes don’t just
depend on covariance bounds but on the “size” of the function class
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General maximal inequality with bracketing

Recall our goal: To bound

E sup
f∈F

∣∣∣∣ ∫ f d(µn − µ)

∣∣∣∣

Size of F : Bracketing number N(u, ∥·∥,F) is the number of pairs
[Lj ,Uj ] of functions such that ∥Uj − Lj∥ ≤ u and given any f ∈ F ,
there exists jf satisfying

Ljf ≤ f ≤ Ujf

An important function on the space of positive integers

Λ(q) :=

q−1∑
k=0

βk .
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Maximal inequality with L∞ bracketing

Given u > 0, solve the following equation on positive integers:

β(q) ≈ q

n
(1 + logN(u,F , ∥·∥∞))

to get qn(u).

Informal bound

Suppose F has a L∞ diameter σ (bounded above and below in n), then

E sup
f∈F

∣∣∣∣ ∫ f d(µn − µ)

∣∣∣∣ ≲ n−1/2a,

where

a ≥
∫ σ

a√
n

√
Λ(qn(u)) logN(u,F , ∥·∥∞) du

For i.i.d. data qn(u) = 1, Λ(qn(u)) = 1 and we get back usual bound
with integral of square root of log bracketing number
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Maximal inequality with Lr bracketing, r > 2

Given u > 0, the definition of qn(u) stays the same with ∥·∥∞
replaced with ∥·∥r .

Consider

Λr (q) :=

q−1∑
k=0

β
1− 2

r

k .

Informal bound

Suppose F has a Lr diameter σ (bounded above and below in n), then

E sup
f∈F

∣∣∣∣ ∫ f d(µn − µ)

∣∣∣∣ ≲ n−1/2a,

where

a ≥
∫ σ

a√
n

√
Λr (qn(u)) logN(u,F , ∥·∥∞) du

Note the degeneracy for r = 2. We will come back to this.
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E sup
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where
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a√
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√
Λr (qn(u)) logN(u,F , ∥·∥∞) du

Note the degeneracy for r = 2. We will come back to this.
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Example

Suppose α > 2 and F is a class of functions satisfying

logN(u,F , ∥·∥∞) ≲ u−
1
α .

Further assume βk ≤ (1 + k)−β for some β > 0

This will imply

qn(u) = (nuα)
1

1+β .

Plugging into the previous theorem gives (for d ≥ 2s + 1),

1

n

n∑
i=1

E(f̂n(Xi )− f ∗(Xi ))
2 ≲

{
n−

1
α if β > 1

α−1

n−
β

β+1 otherwise
.

Potential optimality

The n−
1
α rate is not improvable in general; Birge and Massart, 1993

If α > 2 then in the long range dependence regime (1/(α− 1), 1),

we get the optimal n−
1
α rates
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Proof ideas: Essential tools

Three key techniques for our proof is:
1 Berbee’s coupling Theorem (showed few slides before).

2 Blocking technique of Bernstein. (In a sequence of dependent data,
if two blocks are far away, the dependence between them is meager,
goes back to Bernstein (1927).

3 Chaining method with adaptive truncation (for non-Donsker class of
function, as integral of log bracketing number diverges near 0, c.f.
Ossiander (1987), Pollard (2002)

Our proof relies on the techniques developed in a series of works by
Doukhan, Massart and Rio (e.g. Rio (1993), DMR (1994, 1995)),
whilst the main difference is that our result generalizes to the case
when β < 1

16 / 22



Proof ideas: Essential tools

Three key techniques for our proof is:
1 Berbee’s coupling Theorem (showed few slides before).

2 Blocking technique of Bernstein. (In a sequence of dependent data,
if two blocks are far away, the dependence between them is meager,
goes back to Bernstein (1927).

3 Chaining method with adaptive truncation (for non-Donsker class of
function, as integral of log bracketing number diverges near 0, c.f.
Ossiander (1987), Pollard (2002)

Our proof relies on the techniques developed in a series of works by
Doukhan, Massart and Rio (e.g. Rio (1993), DMR (1994, 1995)),
whilst the main difference is that our result generalizes to the case
when β < 1

16 / 22



Proof ideas: Essential tools

Three key techniques for our proof is:
1 Berbee’s coupling Theorem (showed few slides before).

2 Blocking technique of Bernstein. (In a sequence of dependent data,
if two blocks are far away, the dependence between them is meager,
goes back to Bernstein (1927).

3 Chaining method with adaptive truncation (for non-Donsker class of
function, as integral of log bracketing number diverges near 0, c.f.
Ossiander (1987), Pollard (2002)

Our proof relies on the techniques developed in a series of works by
Doukhan, Massart and Rio (e.g. Rio (1993), DMR (1994, 1995)),
whilst the main difference is that our result generalizes to the case
when β < 1

16 / 22



Proof ideas: Essential tools

Three key techniques for our proof is:
1 Berbee’s coupling Theorem (showed few slides before).

2 Blocking technique of Bernstein. (In a sequence of dependent data,
if two blocks are far away, the dependence between them is meager,
goes back to Bernstein (1927).

3 Chaining method with adaptive truncation (for non-Donsker class of
function, as integral of log bracketing number diverges near 0, c.f.
Ossiander (1987), Pollard (2002)

Our proof relies on the techniques developed in a series of works by
Doukhan, Massart and Rio (e.g. Rio (1993), DMR (1994, 1995)),
whilst the main difference is that our result generalizes to the case
when β < 1

16 / 22



Outline

1 General empirical process bounds
Main mixing assumptions — Formal Problem Statement
Long and Short Range Dependence
General maximal inequalities
Proof ideas

2 Shape restricted convex regression
Bounded convex Least squares (LS) estimator
Faster rates and localization

3 Conclusion

16 / 22



Outline

1 General empirical process bounds
Main mixing assumptions — Formal Problem Statement
Long and Short Range Dependence
General maximal inequalities
Proof ideas

2 Shape restricted convex regression
Bounded convex Least squares (LS) estimator
Faster rates and localization

3 Conclusion

16 / 22



An illustration: Multivariate convex regression

Consider the least squares regression with stationary β-mixing data,
(X1,Y1), . . . , (Xn,Yn), assume compact (polytopal) supports. Goal
is to estimate f ∗(x) = E [Y |X = x ] ∈ F with the estimator

f̂n := argminf∈F

n∑
i=1

(Yi − f (Xi ))
2.

Suppose F is the class of convex functions on Rd for d ≥ 5 which
are bounded by 1, then

logN(u,F , ∥·∥r ) ≲ Cru
− d

2 .

Plugging into the previous theorem gives (for d ≥ 5),

E(f̂n(X )− f ∗(X ))2 ≲

{
n−

2
d if β > 2

d−2

n−
β

β+1 otherwise
.

Rate is not improvable for LS estimator even under independence
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Is this rate improvable?

Bounded convex LS estimator enjoys some tuning-free adaptation
when f ∗ is affine, in the i.i.d. setting

The rate of convergence is

E(f̂n(X )− f ∗(X ))2 ≲ n−
4
d

for d > 4

This rate is known to not be improvable

The rate comes from solving the following equation:

δ2n ∼ E sup
f∈F : ∥f−f ∗∥L2

≤δn

∣∣∣∣ ∫ d d(µn − µ)

∣∣∣∣
Note the occurence of L2 norm which is not covered by our earlier
result
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Maximal inequality with L2 bracketing

Stronger mixing condition γk = βk ∨ ρk

Given u > 0, the definition of qn(u) stays the same with ∥·∥∞
replaced with ∥·∥2 and βk with γk .

Consider

Λ2(q) :=

q−1∑
k=0

γk .

Informal bound

Suppose F has a L2 diameter σ (bounded above and below in n), then

E sup
f∈F

∣∣∣∣ ∫ f d(µn − µ)

∣∣∣∣ ≲ n−1/2a,

where

a ≥
∫ σ

a√
n

√
Λ2(qn(u)) logN(u,F , ∥·∥2) du
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Faster rates with stronger mixing

Assume stronger mixing γk = βk ∨ ρk ≲ (1 + k)−γ

Then we can provide a bound for localized empirical processes with
respect to L2-norm

Rates for adaptation

Consider the multivariate shape-restricted regression setting from before.
Suppose that f ∗ is k-piece affine, i.e., there exists k simplices in
dimension d such that f ∗ is affine on all of them. Then under the
stronger mixing assumption, we have:

E(f̂n(X )− f ∗(X ))2 ≲ n−
4
d

for d > 4(1 + γ−1)

In particular, if d > 8, then there exists an interval in the long range
dependence regime (4/(d − 4), 1) where optimal i.i.d. like rates are
recovered

20 / 22



Faster rates with stronger mixing

Assume stronger mixing γk = βk ∨ ρk ≲ (1 + k)−γ

Then we can provide a bound for localized empirical processes with
respect to L2-norm

Rates for adaptation

Consider the multivariate shape-restricted regression setting from before.
Suppose that f ∗ is k-piece affine, i.e., there exists k simplices in
dimension d such that f ∗ is affine on all of them. Then under the
stronger mixing assumption, we have:

E(f̂n(X )− f ∗(X ))2 ≲ n−
4
d

for d > 4(1 + γ−1)

In particular, if d > 8, then there exists an interval in the long range
dependence regime (4/(d − 4), 1) where optimal i.i.d. like rates are
recovered

20 / 22



Faster rates with stronger mixing

Assume stronger mixing γk = βk ∨ ρk ≲ (1 + k)−γ

Then we can provide a bound for localized empirical processes with
respect to L2-norm

Rates for adaptation

Consider the multivariate shape-restricted regression setting from before.
Suppose that f ∗ is k-piece affine, i.e., there exists k simplices in
dimension d such that f ∗ is affine on all of them. Then under the
stronger mixing assumption, we have:

E(f̂n(X )− f ∗(X ))2 ≲ n−
4
d

for d > 4(1 + γ−1)

In particular, if d > 8, then there exists an interval in the long range
dependence regime (4/(d − 4), 1) where optimal i.i.d. like rates are
recovered

20 / 22



Faster rates with stronger mixing

Assume stronger mixing γk = βk ∨ ρk ≲ (1 + k)−γ

Then we can provide a bound for localized empirical processes with
respect to L2-norm

Rates for adaptation

Consider the multivariate shape-restricted regression setting from before.
Suppose that f ∗ is k-piece affine, i.e., there exists k simplices in
dimension d such that f ∗ is affine on all of them. Then under the
stronger mixing assumption, we have:

E(f̂n(X )− f ∗(X ))2 ≲ n−
4
d

for d > 4(1 + γ−1)

In particular, if d > 8, then there exists an interval in the long range
dependence regime (4/(d − 4), 1) where optimal i.i.d. like rates are
recovered

20 / 22



Outline

1 General empirical process bounds
Main mixing assumptions — Formal Problem Statement
Long and Short Range Dependence
General maximal inequalities
Proof ideas

2 Shape restricted convex regression
Bounded convex Least squares (LS) estimator
Faster rates and localization

3 Conclusion

20 / 22



Comparison with Yu (1994)

The exponent β
β+1 is not new/unexpected as it “almost” occurs in

Yu (1994).

To be more precise, for 0 < β < 1, (Yu, 1994) obtained a bound of
the form

op(n
− t

t+1 ), for all 0 < t < β

when the function class is “small”, i.e.,

logN (F , ∥·∥∞, ϵ) ≲ − log ϵ.

Three key differences:
1 Our function classes of interest have larger size

2 Choosing t = β, which replaces o(·) by O(·).

3 Translating the asymptotic bound to bounds on finite sample error
bounds
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Summary

Our maximal inequalities can be used in various applications, e.g.
Non-parametric regression with adaptation
Regularized and unregularized optimal transport
Function fitting with deep neural nets in both low and high
dimensions
Classification under non-convex loss function

Our analysis indicates a new threshold on β (when β(j) ∼ j−β),
below which we get slower rate (in comparison to i.i.d. setup) relies
on the underlying dimension/complexity of function classes.

Ongoing work:

1 Relax the mixing condition to α(j) (strong mixing).

2 Tail bound and asymptotic limit theorem, especially when β < 1.

3 Improve localization bounds

4 Minimax lower bounds

Thank you. Questions?
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