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Ising Model
Consider

dP
d
∏n

i=1 µi
(β) :=

1

Zn
exp

(
1

2
β⊤Anβ + c⊤β

)
,

µi supported on [−1, 1], β = (β1, . . . , βn), and field vector
c = (c1, . . . , cn).

1 An = 0 implies βis are independent

2 An(i, j) > 0 implies that sites i and j are inclined to align in the
same direction.

3 Large ci implies site i is more likely to take larger values

4 Interaction matrix - An, Partition function - Zn

Our goal

To study the asymptotic distribution of

Tn = q⊤(β − ??), ∥q∥ = 1

for certain linear combinations.
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First motivating example

P(β) :=
1

Zn
exp

(
θ

2
β⊤Anβ +B

n∑
i=1

βi

)
,

βi ∈ {−1, 1} binary. The field vector c is constant at B. θ —
temperature parameter.

In social networks, to study trends in opinions (voting choices),
where GN could be determined by “friendships” within the
network.
(Phase transition) Modeling ferromagnetic properties (i.e., sharp
change in magnetic properties of magnetic materials when heated
beyond a certain (Curie) temperature — coded into An).

Natural question

Behavior of the “sufficient statistic”

n−??
n∑

i=1

(βi − ??)
d−→ ...

CLT for Sufficient statistic ↔ CLT for MLE of B. What is the
centering and scaling in terms of An and B?
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Second motivating example: Standard linear regression

Suppose we have the standard linear regression model

y = Xβ + ε.

Here

y ∈ Rn is the observed data,

X ∈ Rn×p is the (non-random) design matrix;

β is the coefficient vector;

ε ∈ Rn is a vector of i.i.d. N(0, σ2) random variables.

Assume that σ is known (and equals 1), but the parameter
β ∈ [−1, 1]p is unknown.
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Bayesian perspective: put a prior

Suppose π is a probability distribution on [−1, 1].

Let β have a product prior, under which {βi}1≤i≤p
i.i.d.∼ π.

Then the posterior µ = µy,X,π of β given y is given by

dµ

dπ⊗p
(β) ∝ exp

(
−1

2
∥y −Xβ∥22

)

The posterior is a quadratic interaction model where interaction
matrix comes from σ−2X⊤X and the field vector σ−2X⊤y is
non-constant.

We want to understand the behavior of this posterior
distribution.
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High vs Low Signal to Noise

Most of the existing literature on this problem focuses on the
setting where the operator norm ∥X∥ → ∞, which we will refer
to as high signal-to-noise (SNR) regime

— posterior contraction
+ Laplace method

A different regime is the case when ∥X∥2 = O(1), which results
in the low SNR regime — no posterior contraction + no Laplace
method

To simplify, let’s focus on the very special case p = 1:

Y1, · · · , Yn
iid∼ N(θ, 1) vs. Y1, · · · , Yn

iid∼ N
( h√

n
, 1
)
.

The first example has design vector 1n, which has norm
√
n.

Hence this is high SNR. In this case consistent estimation of θ is
possible, and the posterior contracts at rate

√
n

(Bernstein-von-Mises).
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High vs Low Signal to Noise

The second example has design vector n−1/21n, which has norm
1.

Hence this is low SNR. In this case consistent estimation of h is
impossible, and the posterior does not contract.

In a very similar manner, it is expected that more generally when
∥X∥2 = O(1), consistent estimation of β is impossible.

This is known in the special case when the design matrix X has

IID Gaussian entries, given by Xij ∼ N
(
0, 1

n

)
(Barbier et al.,

IEEE-20).

Also true in the Gaussian sequence model Yi = βi + ϵi, where the
design X is the identity matrix

In this talk we will focus on this low SNR regime, which is a
(non-trivial) extension of the LAN regime of classical statistics.
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What can we expect?

As suggested in the last slide, we expect the posterior to not
contract, and do not expect Bernstein von Mises type CLT to
hold.

At a high level, because of the scaling choice, the prior never gets
washed away, but competes with the likelihood.

Thus one expects the prior to show up in non-trivial ways in the
asymptotics, affecting LLNs and CLTs.

Natural question

A high-dimensional limit p, n → ∞
p∑

i=1

qi(βi − ??)
d−→ ... conditioned on X,y

where β drawn from the posterior. Note q⊤β is the posterior
prediction when the covariate is q.

Ideally the analysis will apply to both deterministic and random X,
and allows for possibly dependent entries.

7 / 32



What can we expect?

As suggested in the last slide, we expect the posterior to not
contract, and do not expect Bernstein von Mises type CLT to
hold.

At a high level, because of the scaling choice, the prior never gets
washed away, but competes with the likelihood.

Thus one expects the prior to show up in non-trivial ways in the
asymptotics, affecting LLNs and CLTs.

Natural question

A high-dimensional limit p, n → ∞
p∑

i=1

qi(βi − ??)
d−→ ... conditioned on X,y

where β drawn from the posterior. Note q⊤β is the posterior
prediction when the covariate is q.

Ideally the analysis will apply to both deterministic and random X,
and allows for possibly dependent entries.

7 / 32



What can we expect?

As suggested in the last slide, we expect the posterior to not
contract, and do not expect Bernstein von Mises type CLT to
hold.

At a high level, because of the scaling choice, the prior never gets
washed away, but competes with the likelihood.

Thus one expects the prior to show up in non-trivial ways in the
asymptotics, affecting LLNs and CLTs.

Natural question

A high-dimensional limit p, n → ∞
p∑

i=1

qi(βi − ??)
d−→ ... conditioned on X,y

where β drawn from the posterior. Note q⊤β is the posterior
prediction when the covariate is q.

Ideally the analysis will apply to both deterministic and random X,
and allows for possibly dependent entries.

7 / 32



What can we expect?

As suggested in the last slide, we expect the posterior to not
contract, and do not expect Bernstein von Mises type CLT to
hold.

At a high level, because of the scaling choice, the prior never gets
washed away, but competes with the likelihood.

Thus one expects the prior to show up in non-trivial ways in the
asymptotics, affecting LLNs and CLTs.

Natural question

A high-dimensional limit p, n → ∞
p∑

i=1

qi(βi − ??)
d−→ ... conditioned on X,y

where β drawn from the posterior.

Note q⊤β is the posterior
prediction when the covariate is q.

Ideally the analysis will apply to both deterministic and random X,
and allows for possibly dependent entries.

7 / 32



What can we expect?

As suggested in the last slide, we expect the posterior to not
contract, and do not expect Bernstein von Mises type CLT to
hold.

At a high level, because of the scaling choice, the prior never gets
washed away, but competes with the likelihood.

Thus one expects the prior to show up in non-trivial ways in the
asymptotics, affecting LLNs and CLTs.

Natural question

A high-dimensional limit p, n → ∞
p∑

i=1

qi(βi − ??)
d−→ ... conditioned on X,y

where β drawn from the posterior. Note q⊤β is the posterior
prediction when the covariate is q.

Ideally the analysis will apply to both deterministic and random X,
and allows for possibly dependent entries.

7 / 32



What can we expect?

As suggested in the last slide, we expect the posterior to not
contract, and do not expect Bernstein von Mises type CLT to
hold.

At a high level, because of the scaling choice, the prior never gets
washed away, but competes with the likelihood.

Thus one expects the prior to show up in non-trivial ways in the
asymptotics, affecting LLNs and CLTs.

Natural question

A high-dimensional limit p, n → ∞
p∑

i=1

qi(βi − ??)
d−→ ... conditioned on X,y

where β drawn from the posterior. Note q⊤β is the posterior
prediction when the covariate is q.

Ideally the analysis will apply to both deterministic and random X,
and allows for possibly dependent entries.

7 / 32



What to expect?

For two-spin Ising model with constant magnetization on
approximately regular graphs —

Phase transitions in the fluctuations of
∑n

i=1 βi and universal
limit laws (free of An).

(Potential) non-universality and lack of phase transitions for∑n
i=1 qiβi for some other q.

In Bayesian linear regression (only in high temperature)

Effect of prior in the centering (and limiting variance).

Bayesian low SNR credible sets

(Not in the talk) General Berry-Esseen bounds —
https://arxiv.org/abs/2005.00710 and
https://arxiv.org/abs/2503.21152.
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Proposed approach: Naive Mean Field

One frequently used method to “understand” the posterior µ is
the naive mean field (NFM) variational approximation.

This is obtained by projecting µ to the space of product
measures on [−1, 1]p, using the Kullback-Leibler divergence.

Typical result (Basak and Mukherjee, 2015)

Let Pprod denote the space of product measures on [−1, 1]p, then
under the Mean-Field assumption ∥A∥2F = o(p) (Frobenius norm of
interaction matrix), the following holds:

inf
ν∈Pprod

KL(ν|µy,X,π) = o(p).

The optimization resulting from the above projection is usually
easy to compute.

NMF is computationally efficient (see Jain et al. 2018) as
opposed to MCMC based methods, particularly in high
dimensions.
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How does the projection look like?

Write
σ2X′X = A+D, and σ2c = X′y.

Suppose for simplicity that all diagonal entries of X′X are the
same, i.e. D = dI. This assumption is not needed for most of our
results, but simplifies the argument+notations.

Define a linear+quadratic of the prior π by setting

dπθ,d

dπ
(w) = eθx−

d
2w

2−α(θ),

where

α(θ) := απ,d(θ) = log

∫
[−1,1]

eθw− d
2w

2

dπ(w).

Then α′′(θ) = V arπθ,d
(W ) > 0, and so α′(·) : R 7→ (−1, 1) is

strictly monotone. Note that α(·) depends on the prior π.

Let h(·) : (−1, 1) 7→ R be the inverse of the function α′(·),
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How does the projection look like?

Consider the following auxiliary optimization problem

sup
u∈[−1,1]p

{
−1

2
u′Au+ c′u−

p∑
i=1

KL(πh(ui),d|π0,d)

}
. (1)

Then any optimizer over the space of product measures is of the
form

p∏
i=1

πθopt
i ,d,

where θopt is chosen such that Eπθopt,d
(W ) = uopt, and uopt is a

global optimizer to (1). uopt will serve as the centering term.

Thus we have reduced the optimization over the space of
measures to an optimization over the space of mean vectors u.
We will refer to (1) as the mean-field prediction formula.

Note that uopt depends on (y,X, π), which we omit in the
notation.
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Uniqueness of optimizer

In general the mean-field prediction formula does not have a
unique solution.

In M.-Sen, JMLR-2022, Lacker-M-Yeung, IMRN-2024 we provide
sufficient conditions on (A, π) under which there is a unique
well-separated global optimizer.

One sufficient condition is that ∥A∥2 ≤ 1− ρ, for some ρ (free of
n, p).

This corresponds to the so called high temperature regime of
statistical physics.

As a comment, typically they assume the somewhat stronger
assumption ∥A∥∞ ≤ 1− ρ particularly for quantitative bounds
(concentration inequalities).
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Existing work

Recall

P(β) :=
1

Zn
exp

(
θ

2
β⊤Anβ +B

n∑
i=1

βi

)
,

βi ∈ {−1, 1} binary. The field vector c is constant at B. θ > 0 —
temperature parameter.

Most of existing work analyzing Tn = n−1
∑n

i=1 βi focuses
exclusively on the Curie-Weiss model (see Ellis-Newman (1978),
Chatterjee-Shao (2011), Shao-Zhang (2017)), where An is the
(scaled) complete graph.

It is thus perhaps not surprising that (X1, . . . , Xn) can be
expressed as an exact mixture of i.i.d. laws. This observation
(implicitly) plays an important role in existing analysis

We focus on other approximately regular graphs with diverging degree
satisfying a Mean-Field condition.
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Mean-Field optimizers in the two-spin case

The coordinates of the Mean-Field optimizer uopt splits into
solutions of n independent stationarity conditions given by

t = tanh(θt+B).

Properties of above equation —

If 0 ≤ θ ≤ 1, B = 0, then unique solution tθ,B = 0.

If θ > 1, B = 0, then unique positive solution tθ,B .

If θ > 0, B > 0, then unique positive solution tθ,B (negative soln.
for B < 0).

Can be extended to the case beyond two-spins as long as An is
“approximately” regular.

Does n−??
∑n

i=1(βi − tθ,B) converge?
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Law of Large numbers for Tn = n−1
∑n

i=1 βi

Basak-Mukherjee (2015), D.-Mukherjee (2023)

If An is a sequence of (scaled) “approximately” dn-regular graphs,

with dn
n→∞−→ ∞, then:

1 If B > 0, then Tn
d−→ tθ,B

2 If θ ≤ 1, B = 0, then Tn
w−→ 0.

3 If θ > 1, B = 0 and Gn is “well-connected”, then

Tn
w−→

{
tθ,B w.p. 0.5

−tθ,B w.p. 0.5
.

Shades of phase transition at θ = 1 when B = 0.

More profound effect of phase transition in rates of convergence
and fluctuations.
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Fluctuations

B > 0, D.-Mukherjee (2023)

If An is a sequence of “approximately” dn-regular graphs, then:

sup
x∈R

∣∣∣∣∣P(√n(Tn − tθ,B) ≤ x)− P

(√
1− t2θ,B

1− θ(1− t2θ,B)
Z ≤ x

)∣∣∣∣∣ ≲
√
n

dn
.

Here Z ∼ N (0, 1).

In particular if dn ≫ n1/2, then the distributional limit holds.

This threshold is tight as there exists sequence of graphs with
dn ∼ n1/2 for which the limit does not hold.
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Fluctuations

B = 0, θ < 1, D.-Mukherjee (2023)
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In particular if dn ≫ n1/3, then the distributional limit holds.

We do expect the limit to hold whenever dn → ∞.
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Fluctuations

B = 0, θ = 1, D.-Mukherjee (2023)

If GN is a sequence of “approximately” dn-regular graphs which are
well-connected, then:

sup
x∈R

∣∣∣∣∣P(n1/4Tn ≤ x)− P(W ≤ x)

∣∣∣∣∣ ≲
√
npoly(log n)

dn

where W now has density proportional to exp(−x4/12).

In particular if dn ≫ n1/2, then the distributional limit holds.

This threshold is tight as there exists sequence of graphs with
dn ∼ n1/2 for which the limit does not hold.

The well-connectedness assumption is also tight.
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Fluctuations

B = 0, θ > 1, D.-Mukherjee (2023)

If An is a sequence of “approximately” dn-regular graphs which are
well-connected, then:

sup
x∈R

∣∣∣∣∣P(√n(Tn − tθ,B) ≤ x|Tn > 0)− P

(√
1− t2θ,B

1− θ(1− t2θ,B)
Z ≤ x

)∣∣∣∣∣ ≲
√
n

dn

Similar result holds by conditioning on Tn < 0 and replacing tθ,B by
−tθ,B .

In particular if dn ≫ n1/2, then the distributional limit holds.

This threshold is tight as there exists sequence of graphs with
dn ∼ n1/2 for which the limit does not hold.

The well-connectedness assumption is also tight.
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What happens for q⊤β?

Lack of phase transition or universality for “approximately”
dn-regular graphs.

Other directions in Erdős-Rényi/ random regular

Suppose An is the adjacency matrix of an Erdős-Rényi graph with
edge probability κn, scaled by the edge density nκn. Assume the
following

κn >> n−1/2, ∥q∥2 = 1,

n∑
i=1

qi = o(n1/2).

Then
n∑

i=1

qi(βi − tθ,B)|An
w−→ N(0, 1− t2θ,B).

Therefore when q is a contrast, there is no phase transition!

Generally it matters which eigenvalue of An, the direction q is
most aligned towards. The corresponding eigenvalue shows up in
the limiting variance.
In regular graphs, the leading eigenvector is always n−1/21 with
eigenvalue 1. Therefore choosing q = n−1/21 leads to universal
behavior for “approximately” regular graphs.
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Brief Summary

We derive Berry-Esseen bounds between n−1/2
∑n

i=1 βi and an
appropriate limit (Gaussian or otherwise) through the full
Ferromagnetic parameter regime θ > 0 and B ∈ R.

In particular, this condition holds both for deterministic and
random interaction matrices.

Also works beyond binary {−1, 1} spins. If instead the
domination measure is some µ (symmetric around 0), one can
still derive similar results with the phase transition point being at
(α′′(0))−1 where α(·) is the cumulant generating function of µ.

Non-universal behavior and lack of phase transitions for general
linear combinations with q.
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Assumptions

Our goal is a high-dimensional limit p, n → ∞
p∑

i=1

qi(βi − ??)
d−→ ... conditioned on X,y

where β drawn from the posterior µy,X,π.

We make a high temperature assumption ∥A∥4 ≤ 1− ρ,
A = Off(X⊤X).

In particular, this assumption guarantees uniqueness of the
Mean-Field optimizer uopt (which will be our centering), for any
prior π.

Also, this assumption ensures that we are in low SNR regime
∥A∥2 = O(1).

Our second assumption is the strong mean-field condition

max
i∈[p]

p∑
j=1

A2
ij = o(p−1/2).

Finally, we assume that q is an arbitrary vector with ∥q∥2 = 1.
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LLN

Lee-D.-Mukherjee, 25+

(i) Under the above assumptions, there is a unique well separated
optimizer uopt for the mean-field prediction formula.

(ii) Further we have

Eµ

[ p∑
i=1

qi(βi − uopt
i )

]2
= O(1).

Note that this bound is the best possible, as even if {βi}1≤i≤p

were independent with mean uopt
i , the second moment would be

O(1).

Recall that Bayes optimal estimator for
∑p

i=1 qiβi is∑p
i=1 qiEµ[βi|y,X]. Same computation shows that the

Mean-Field estimator
∑p

i=1 qiu
opt
i is approximately Bayes

optimal for
∑p

i=1 qiβi.
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Some comments about LLN Theorem

The above theorem applies for deterministic y and X.

If y (and X) are random, it continues to hold, after conditioning
on y (and X).

The crucial assumption of the theorem is the strong mean-field
assumption maxi∈[p]

∑p
j=1 A

2
ij = o(p−1/2).

There are known examples which show that the mean-field
centering uopt is not the right one if
maxi∈[p]

∑p
j=1 A

2
ij = O(p−1/2).
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Assumptions1

For CLT1 we still make the assumption that Xij = n−1/2Zij ,
where (Zij)1≤i≤n,1≤j≤p are IID observations from a sub-gaussian
distribution.

We also assume that the vector q is delocalized, in the sense that
∥q∥∞ → 0.

Note that if q is not delocalized, CLT does not hold for q⊤β even
for IID random variables β.

Finally, we also assume that the true data y is generated from a
frequentist linear model of the form

y = Xβ⋆ + ε, where ∥β⋆∥∞ ≤ 1 and ε ∼ N(0, I).
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CLT1

Lee-D.-Mukherjee, 25+

Under the above assumptions, conditioning on y,X,β⋆, under the
posterior µ = µy,X,π we have

p∑
i=1

qi(βi − uopt
i )

d
≈ N(0, υ),

provided p ≪ n−2/3.

Here υ :=
∑p

i=1 q
2
i α

′′(ci). Recall c = X⊤y.

Note that all the quantities

α(·) = απ,d(·), c = X⊤y, uopt = uopt
y,X,π

can be computed once we know (y,X, π). Here π-prior and
d=Diagonal of X⊤X.

In particular, they don’t depend on the unknown true β⋆.

26 / 32



CLT1

Lee-D.-Mukherjee, 25+

Under the above assumptions, conditioning on y,X,β⋆, under the
posterior µ = µy,X,π we have

p∑
i=1

qi(βi − uopt
i )

d
≈ N(0, υ),

provided p ≪ n−2/3. Here υ :=
∑p

i=1 q
2
i α

′′(ci). Recall c = X⊤y.

Note that all the quantities

α(·) = απ,d(·), c = X⊤y, uopt = uopt
y,X,π

can be computed once we know (y,X, π). Here π-prior and
d=Diagonal of X⊤X.

In particular, they don’t depend on the unknown true β⋆.

26 / 32



CLT1

Lee-D.-Mukherjee, 25+

Under the above assumptions, conditioning on y,X,β⋆, under the
posterior µ = µy,X,π we have

p∑
i=1

qi(βi − uopt
i )

d
≈ N(0, υ),

provided p ≪ n−2/3. Here υ :=
∑p

i=1 q
2
i α

′′(ci). Recall c = X⊤y.

Note that all the quantities

α(·) = απ,d(·), c = X⊤y, uopt = uopt
y,X,π

can be computed once we know (y,X, π). Here π-prior and
d=Diagonal of X⊤X.

In particular, they don’t depend on the unknown true β⋆.

26 / 32



CLT1

Lee-D.-Mukherjee, 25+

Under the above assumptions, conditioning on y,X,β⋆, under the
posterior µ = µy,X,π we have

p∑
i=1

qi(βi − uopt
i )

d
≈ N(0, υ),

provided p ≪ n−2/3. Here υ :=
∑p

i=1 q
2
i α

′′(ci). Recall c = X⊤y.

Note that all the quantities

α(·) = απ,d(·), c = X⊤y, uopt = uopt
y,X,π

can be computed once we know (y,X, π). Here π-prior and
d=Diagonal of X⊤X.

In particular, they don’t depend on the unknown true β⋆.

26 / 32



Comments about CLT1

Note that the previous theorem does not directly make the design
assumptions

∥A∥4 ≤ 1− ρ and max
1≤i≤p

p∑
j=1

A2
ij = o(p−1/2),

made for the LLN.

We verify that both the assumptions hold if p ≪ n−2/3.

This requires a new Chevet type inequality for bounding (4, 4)
operator norm of random covariance matrices. A more naive
∥A∥∞ ≤ 1− ρ condition would result in a weaker threshold
p ≪ n−1/2.

We believe the dimension dependence is sharp, in that the
mean-field centering has to be adjusted to go beyond this regime.

As a comment, similar dimension dependence also arises for
Bernstein-von-Mises type CLT approximations in the high SNR
regime (see Katsevich, Arxiv-2023), where they require
p ≪ n−1/2.
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Assumptions2 (True Bayesian model)

For CLT2, we work with a non-random design matrix X.

We explicitly make the assumption ∥A∥4 ≤ 1− ρ.

We also explicitly assume the strong mean-field condition

max
i∈[p]

p∑
j=1

A2
ij = o(p−1/2).

But now we assume that q is an (approximate) eigenvector of
−A, with eigenvalue λ.

Finally, we assume that the true data y is generated from a
linear model of the form

y = Xβ⋆ + ε, where β⋆ IID∼ π⋆, and ε ∼ N(0, I).

Here π⋆ is a symmetric distribution with finite fourth moment.
Thus we allow the prior to be misspecified as π, where the true
data generating prior is π⋆.
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CLT2

Lee-D.-Mukherjee, 25+

Under the above assumptions, conditioning on y,X,β⋆, under the
posterior µ = µy,X,π we have

p∑
i=1

qi(βi − uopt
i )

d
≈ N

(
0,

υ

1− λυ

)

Here υ =
∑p

i=1 q
2
i α

′′(ci) as before. Recall c = X⊤y.

Note that the centering or scaling quantities uopt and υ do not
depend on the (possibly unknown) true prior π⋆.

For both CLTs we provide explicit convergence rates for the
above theorem in Kolmogorov-Smirnov distance.
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Application: Credible Intervals

Based on CLT2, the set

I := I(y,X, π) :=
[ p∑

i=1

qiu
opt
i ± zα/2

√
υ

1− λυ

]
is asymptotically a 1− α credible interval under the posterior
µy,X,π.

Lee-D.-Mukherjee, 25+

Suppose we are in the set up of CLT2.

Then we have

Pπ∗

( p∑
i=1

qiβ
⋆
i ∈ I(y)

∣∣∣X) P→ F (d, α, π, π⋆).

In particular F (d, α, π⋆, π⋆) = 1− α, so if we use the correct prior, we
have asymptotically valid credible intervals.

Also works if you sample split to estimate π⋆ by some π̂n and use it as
a plug-in prior.
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Brief Summary

We give general conditions on the design matrix X for LLN and
CLT to hold, for Bayesian Linear Regression with a product
prior.

In particular, this condition holds both for deterministic and
random matrices, and allows for dependence of entries.

We give explicit error rates in terms of the Kolmogorov-Smirnov
distance.

We apply our results to construct credible intervals, and compute
their asymptotic coverage under possible prior misspecification.
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Future Scope

A natural question is whether we can study the low temperature
regime, where ∥A∥4 > 1.

In this case one can have more than one
mean-field optimizer, and the right approximation should be a
mixture of product measures.

Another possible direction is to remove the compactness
assumption, and allow for a broader class of priors. One can
assume log-concavity of the prior, which also guarantees
uniqueness of optimizer.

Finally, it remains to study similar questions for non-quadratic
posteriors. People apply NMF to a host of problems (GLMs,
Topic Modeling).

Thank you. Questions?
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